X 1
内心
incenter
f ( a , b , c ) = a f(a,b,c)=a f ( a , b , c ) = a
X 2
重心
centroid
f ( a , b , c ) = 1 f(a,b,c)=1 f ( a , b , c ) = 1
X 3
外心
circumcenter
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) f(a,b,c)=a^2(b^2+c^2-a^2) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 )
X 4
垂心
orthocenter
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 5
九点円の中心
(外心と垂心の中点)
nine-point center
(midpoint of the circumcenter and the orthocenter)
f ( a , b , c ) = a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 f(a,b,c)=a^2(b^2+c^2)-(b^2-c^2)^2 f ( a , b , c ) = a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
X 6
類似重心
(ルモワーヌ点)
(グレーベ点)
symmedian point
(Lemoine point)
(Grebe point)
f ( a , b , c ) = a 2 f(a,b,c)=a^2 f ( a , b , c ) = a 2
X 7
ジェルゴンヌ点
Gergonne point
f ( a , b , c ) = ( c + a − b ) ( a + b − c ) f(a,b,c)=(c+a-b)(a+b-c) f ( a , b , c ) = ( c + a − b ) ( a + b − c )
別解
f ( a , b , c ) = 1 b + c − a f(a,b,c)=\dfrac{1}{b+c-a} f ( a , b , c ) = b + c − a 1
X 8
ナーゲル点
Nagel point
f ( a , b , c ) = b + c − a f(a,b,c)=b+c-a f ( a , b , c ) = b + c − a
X 9
ミッテンプンクト
Mittenpunkt
f ( a , b , c ) = a ( b + c − a ) f(a,b,c)=a(b+c-a) f ( a , b , c ) = a ( b + c − a )
X 10
シュピーカー心
(内心とナーゲル点の中点)
(中点三角形の内心)
(傍接円の根心)
Spieker center
(midpoint of the incenter and the Nagel point)
(incenter of the medial triangle)
(radical center of the excircles)
f ( a , b , c ) = b + c f(a,b,c)=b+c f ( a , b , c ) = b + c
X 11
フォイエルバッハ点
Feuerbach point
f ( a , b , c ) = ( b + c − a ) ( b − c ) 2 f(a,b,c)=(b+c-a)(b-c)^2 f ( a , b , c ) = ( b + c − a ) ( b − c ) 2
X 12
元の三角形とフォイエルバッハ三角形の配景の中心
perspector of the reference triangle and the Feuerbach triangle
f ( a , b , c ) = ( c + a − b ) ( a + b − c ) ( b + c ) 2 f(a,b,c)=(c+a-b)(a+b-c)(b+c)^2 f ( a , b , c ) = ( c + a − b ) ( a + b − c ) ( b + c ) 2
別解
f ( a , b , c ) = ( b + c ) 2 b + c − a f(a,b,c)=\dfrac{(b+c)^2}{b+c-a} f ( a , b , c ) = b + c − a ( b + c ) 2
X 13
第一等角心
(第一フェルマー点)
(フェルマー点)
(トリチェリ点)
first isogonic center
(first Fermat point)
(Fermat point)
(Torricelli point)
f ( a , b , c ) = [ 3 ( c 2 + a 2 − b 2 ) + 4 Δ ] [ 3 ( a 2 + b 2 − c 2 ) + 4 Δ ] f(a,b,c)=[\sqrt{3}(c^2+a^2-b^2)+4\Delta][\sqrt{3}(a^2+b^2-c^2)+4\Delta] f ( a , b , c ) = [ 3 ( c 2 + a 2 − b 2 ) + 4Δ ] [ 3 ( a 2 + b 2 − c 2 ) + 4Δ ] ただし、Δ \Delta Δ は元の三角形の面積
別解
f ( a , b , c ) = a 2 ( a 2 + b 2 + c 2 + 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 f(a,b,c)=a^2(a^2+b^2+c^2+4\sqrt{3}\Delta)-2(b^2-c^2)^2 f ( a , b , c ) = a 2 ( a 2 + b 2 + c 2 + 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 ただし、Δ \Delta Δ は元の三角形の面積
X 14
第二等角心
(第二フェルマー点)
second isogonic center
(second Fermat point)
f ( a , b , c ) = [ 3 ( c 2 + a 2 − b 2 ) − 4 Δ ] [ 3 ( a 2 + b 2 − c 2 ) − 4 Δ ] f(a,b,c)=[\sqrt{3}(c^2+a^2-b^2)-4\Delta][\sqrt{3}(a^2+b^2-c^2)-4\Delta] f ( a , b , c ) = [ 3 ( c 2 + a 2 − b 2 ) − 4Δ ] [ 3 ( a 2 + b 2 − c 2 ) − 4Δ ] ただし、Δ \Delta Δ は元の三角形の面積
別解
f ( a , b , c ) = a 2 ( a 2 + b 2 + c 2 − 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 f(a,b,c)=a^2(a^2+b^2+c^2-4\sqrt{3}\Delta)-2(b^2-c^2)^2 f ( a , b , c ) = a 2 ( a 2 + b 2 + c 2 − 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 ただし、Δ \Delta Δ は元の三角形の面積
X 15
第一等力点
first isodynamic point
f ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) + 4 Δ ] f(a,b,c)=a^2[\sqrt{3}(b^2+c^2-a^2)+4\Delta] f ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) + 4Δ ] ただし、Δ \Delta Δ は元の三角形の面積
X 16
第二等力点
second isodynamic point
f ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) − 4 Δ ] f(a,b,c)=a^2[\sqrt{3}(b^2+c^2-a^2)-4\Delta] f ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) − 4Δ ] ただし、Δ \Delta Δ は元の三角形の面積
X 17
第一ナポレオン点
first Napoleon point
f ( a , b , c ) = ( c 2 + a 2 − b 2 + 4 3 Δ ) ( a 2 + b 2 − c 2 + 4 3 Δ ) f(a,b,c)=(c^2+a^2-b^2+4\sqrt{3}\Delta)(a^2+b^2-c^2+4\sqrt{3}\Delta) f ( a , b , c ) = ( c 2 + a 2 − b 2 + 4 3 Δ ) ( a 2 + b 2 − c 2 + 4 3 Δ ) ただし、Δ \Delta Δ は元の三角形の面積
別解
f ( a , b , c ) = − a 4 + a 2 ( 3 ( b 2 + c 2 ) + 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 f(a,b,c)=-a^4+a^2(3(b^2+c^2)+4\sqrt{3}\Delta)-2(b^2-c^2)^2 f ( a , b , c ) = − a 4 + a 2 ( 3 ( b 2 + c 2 ) + 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 ただし、Δ \Delta Δ は元の三角形の面積
X 18
第二ナポレオン点
second Napoleon point
f ( a , b , c ) = ( c 2 + a 2 − b 2 − 4 3 Δ ) ( a 2 + b 2 − c 2 − 4 3 Δ ) f(a,b,c)=(c^2+a^2-b^2-4\sqrt{3}\Delta)(a^2+b^2-c^2-4\sqrt{3}\Delta) f ( a , b , c ) = ( c 2 + a 2 − b 2 − 4 3 Δ ) ( a 2 + b 2 − c 2 − 4 3 Δ ) ただし、Δ \Delta Δ は元の三角形の面積
別解
f ( a , b , c ) = − a 4 + a 2 ( 3 ( b 2 + c 2 ) − 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 f(a,b,c)=-a^4+a^2(3(b^2+c^2)-4\sqrt{3}\Delta)-2(b^2-c^2)^2 f ( a , b , c ) = − a 4 + a 2 ( 3 ( b 2 + c 2 ) − 4 3 Δ ) − 2 ( b 2 − c 2 ) 2 ただし、Δ \Delta Δ は元の三角形の面積
X 19
クローソン点
Clawson point
f ( a , b , c ) = a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 20
ド・ロンシャン点
de Longchamps point
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) ( c 2 + a 2 − b 2 ) + ( a 2 + b 2 − c 2 ) ( b 2 + c 2 − a 2 ) − ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=(b^2+c^2-a^2)(c^2+a^2-b^2)+(a^2+b^2-c^2)(b^2+c^2-a^2)-(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = ( b 2 + c 2 − a 2 ) ( c 2 + a 2 − b 2 ) + ( a 2 + b 2 − c 2 ) ( b 2 + c 2 − a 2 ) − ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別表現
f ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 f(a,b,c)=-3a^4+2a^2(b^2+c^2)+(b^2-c^2)^2 f ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
X 21
シフラー点
Schiffler point
f ( a , b , c ) = a ( b + c − a ) b + c f(a,b,c)=\dfrac{a(b+c-a)}{b+c} f ( a , b , c ) = b + c a ( b + c − a )
別解
f ( a , b , c ) = a ( c + a ) ( a + b ) ( b + c − a ) f(a,b,c)=a(c+a)(a+b)(b+c-a) f ( a , b , c ) = a ( c + a ) ( a + b ) ( b + c − a )
X 22
エクセター点
Exeter point
f ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 ) f(a,b,c)=a^2(b^4+c^4-a^4) f ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 )
X 23
遥遠点(仮称)
far-out point
f ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 − b 2 c 2 ) f(a,b,c)=a^2(b^4+c^4-a^4-b^2c^2) f ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 − b 2 c 2 )
X 24
元の三角形と垂足垂足三角形の配景の中心
perspector of the reference and orthic-of-orthic triangles
f ( a , b , c ) = a 2 [ ( b 2 + c 2 − a 2 ) 2 − 2 b 2 c 2 ] ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a^2[(b^2+c^2-a^2)^2-2b^2c^2](c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = a 2 [( b 2 + c 2 − a 2 ) 2 − 2 b 2 c 2 ] ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別表現
f ( a , b , c ) = a 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a^2[a^4-2a^2(b^2+c^2)+b^4+c^4](c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = a 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 25
垂足三角形と接線三角形の相似中心
homothetic center of the orthic and tangential triangles
f ( a , b , c ) = a 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a^2(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = a 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 26
接線三角形の外心
circumcenter of the tangential triangle
f ( a , b , c ) = a 2 [ a 8 − 2 a 6 ( b 2 + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + c 4 ) ] f(a,b,c)=a^2[a^8-2a^6(b^2+c^2)+2a^2(b^2+c^2)(b^4-b^2c^2+c^4)-(b^2-c^2)^2(b^4+c^4)] f ( a , b , c ) = a 2 [ a 8 − 2 a 6 ( b 2 + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + c 4 )]
別解
f ( a , b , c ) = a 2 [ b 4 ( c 2 + a 2 − b 2 ) 2 + c 4 ( a 2 + b 2 − c 2 ) 2 − a 4 ( b 2 + c 2 − a 2 ) 2 − 2 a 2 b 2 c 2 ( b 2 + c 2 − a 2 ) ) ] f(a,b,c)=a^2[b^4(c^2+a^2-b^2)^2+c^4(a^2+b^2-c^2)^2-a^4(b^2+c^2-a^2)^2-2a^2b^2c^2(b^2+c^2-a^2))] f ( a , b , c ) = a 2 [ b 4 ( c 2 + a 2 − b 2 ) 2 + c 4 ( a 2 + b 2 − c 2 ) 2 − a 4 ( b 2 + c 2 − a 2 ) 2 − 2 a 2 b 2 c 2 ( b 2 + c 2 − a 2 ))]
X 27
垂心とクローソン点のチェバ点
cevapoint of the orthocenter and the Clawson point
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) b + c f(a,b,c)=\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{b+c} f ( a , b , c ) = b + c ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 ) g(a,b,c)=(b+c)(b^2+c^2-a^2) g ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 )
X 28
クローソン点とX 25 のチェバ点
cevapoint of the Clawson point and X 25
f ( a , b , c ) = a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) b + c f(a,b,c)=\dfrac{a(c^2+a^2-b^2)(a^2+b^2-c^2)}{b+c} f ( a , b , c ) = b + c a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 ) g(a,b,c)=(b+c)(b^2+c^2-a^2) g ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 )
X 29
内心と垂心のチェバ点
cevapoint of the incenter and the orthocenter
f ( a , b , c ) = ( b + c − a ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) b + c f(a,b,c)=\dfrac{(b+c-a)(c^2+a^2-b^2)(a^2+b^2-c^2)}{b+c} f ( a , b , c ) = b + c ( b + c − a ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = ( b + c − a ) g ( b , c , a ) g ( c , a , b ) f(a,b,c)=(b+c-a)g(b,c,a)g(c,a,b) f ( a , b , c ) = ( b + c − a ) g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 ) g(a,b,c)=(b+c)(b^2+c^2-a^2) g ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 )
X 30
オイラー無限遠点
Euler infinity point
f ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 f(a,b,c)=2a^4-a^2(b^2+c^2)-(b^2-c^2)^2 f ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
X 31
三線二乗点
trilinear second power point
f ( a , b , c ) = a 3 f(a,b,c)=a^3 f ( a , b , c ) = a 3
X 32
三線三乗点
trilinear third power point
f ( a , b , c ) = a 4 f(a,b,c)=a^4 f ( a , b , c ) = a 4
X 33
垂足三角形と内接線三角形の配景の中心
perspector of the orthic triangle and the intangents triangle
f ( a , b , c ) = a ( b + c − a ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a(b+c-a)(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = a ( b + c − a ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 34
垂心の垂心ベート共役点
(元の三角形とX 33 の外向三角形との配景の中心)
orthocenter-beth conjugate of the orthocenter
(perspector of the reference triangle and the extraversion triangle of X 33 )
f ( a , b , c ) = a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) b + c − a f(a,b,c)=\dfrac{a(c^2+a^2-b^2)(a^2+b^2-c^2)}{b+c-a} f ( a , b , c ) = b + c − a a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 ) g(a,b,c)=(b+c-a)(b^2+c^2-a^2) g ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 )
X 35
元の三角形と傍心三角形の外接円に関する反転との配景の中心
(X 36 の内心外心調和共役点)
perspector of the reference triangle and the inverse in the circumcircle of the excentral triangle
(incenter-circumcenter-harmonic conjugate of X 36 )
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c ) f(a,b,c)=a^2(b^2+c^2-a^2+bc) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c )
X 36
外接円に関する内心の反転
(元の三角形とX 35 の外向三角形との配景の中心)
inverse in the circumcircle of the incenter
(perspector of the reference triangle and the extraversion triangle of X 35 )
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − b c ) f(a,b,c)=a^2(b^2+c^2-a^2-bc) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − b c )
X 37
内心と重心の交叉点
crosspoint of the incenter and the centroid
f ( a , b , c ) = a ( b + c ) f(a,b,c)=a(b+c) f ( a , b , c ) = a ( b + c )
X 38
内心とX 75 の交叉点
crosspoint of the incenter and X 75
f ( a , b , c ) = a ( b 2 + c 2 ) f(a,b,c)=a(b^2+c^2) f ( a , b , c ) = a ( b 2 + c 2 )
X 39
ブロカール中点
Brocard midpoint
f ( a , b , c ) = a 2 ( b 2 + c 2 ) f(a,b,c)=a^2(b^2+c^2) f ( a , b , c ) = a 2 ( b 2 + c 2 )
X 40
ベバン点
Bevan point
f ( a , b , c ) = a ( b c + a − b + c a + b − c − a b + c − a ) f(a,b,c)=a\left(\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}-\dfrac{a}{b+c-a}\right) f ( a , b , c ) = a ( c + a − b b + a + b − c c − b + c − a a )
別解
f ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( b + c ) ( b − c ) 2 ] f(a,b,c)=a[a^3+a^2(b+c)-a(b+c)^2-(b+c)(b-c)^2] f ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( b + c ) ( b − c ) 2 ]
X 41
三線二乗点の類似重心チェバ共役点
symmedian-point-Ceva conjugate of the trilinear second power point
f ( a , b , c ) = a 3 ( b + c − a ) f(a,b,c)=a^3(b+c-a) f ( a , b , c ) = a 3 ( b + c − a )
X 42
内心と類似重心の交叉点
crosspoint of the incenter and the symmedian point
f ( a , b , c ) = a 2 ( b + c ) f(a,b,c)=a^2(b+c) f ( a , b , c ) = a 2 ( b + c )
X 43
内心の類似重心チェバ共役点
symmedian-point-Ceva conjugate of the incenter
f ( a , b , c ) = a ( 1 b + 1 c ) − 1 f(a,b,c)=a\left(\dfrac1b+\dfrac1c\right)-1 f ( a , b , c ) = a ( b 1 + c 1 ) − 1
別解
f ( a , b , c ) = a ( a b + a c − b c ) f(a,b,c)=a(ab+ac-bc) f ( a , b , c ) = a ( ab + a c − b c )
X 44
内心の類似重心直線共役点
symmedian-point-line conjugate of the incenter
f ( a , b , c ) = a ( b + c − 2 a ) f(a,b,c)=a(b+c-2a) f ( a , b , c ) = a ( b + c − 2 a )
X 45
内心のミッテンプンクトベート共役点
Mittenpunkt-beth conjugate of the incenter
f ( a , b , c ) = a ( 2 b + 2 c − a ) f(a,b,c)=a(2b+2c-a) f ( a , b , c ) = a ( 2 b + 2 c − a )
X 46
内心の垂心チェバ共役点
orthocenter-Ceva conjugate of the incenter
f ( a , b , c ) = a [ b ( c 2 + a 2 − b 2 ) + c ( a 2 + b 2 − c 2 ) − a ( b 2 + c 2 − a 2 ) ] f(a,b,c)=a[b(c^2+a^2-b^2)+c(a^2+b^2-c^2)-a(b^2+c^2-a^2)] f ( a , b , c ) = a [ b ( c 2 + a 2 − b 2 ) + c ( a 2 + b 2 − c 2 ) − a ( b 2 + c 2 − a 2 )]
別表現
f ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c ) ] f(a,b,c)=a[a^3+a^2(b+c)-a(b^2+c^2)-(b-c)^2(b+c)] f ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c )]
X 47
X 34 のX 110 ベート共役点
X 110 -beth conjugate of X 34
f ( a , b , c ) = a 3 [ ( b 2 + c 2 − a 2 ) 2 − 2 b 2 c 2 ] f(a,b,c)=a^3[(b^2+c^2-a^2)^2-2b^2c^2] f ( a , b , c ) = a 3 [( b 2 + c 2 − a 2 ) 2 − 2 b 2 c 2 ]
別表現
f ( a , b , c ) = a 3 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] f(a,b,c)=a^3[a^4-2a^2(b^2+c^2)+b^4+c^4] f ( a , b , c ) = a 3 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ]
X 48
内心とX 63 の交叉点
crosspoint of the incenter and X 63
f ( a , b , c ) = a 3 ( b 2 + c 2 − a 2 ) f(a,b,c)=a^3(b^2+c^2-a^2) f ( a , b , c ) = a 3 ( b 2 + c 2 − a 2 )
X 49
正弦三倍角円の中心
center of the sine-triple angle center
f ( a , b , c ) = a 4 ( b 2 + c 2 − a 2 ) [ ( b 2 + c 2 − a 2 ) 2 − 3 b 2 c 2 ] f(a,b,c)=a^4(b^2+c^2-a^2)[(b^2+c^2-a^2)^2-3b^2c^2] f ( a , b , c ) = a 4 ( b 2 + c 2 − a 2 ) [( b 2 + c 2 − a 2 ) 2 − 3 b 2 c 2 ]
X 50
X 184 のX 74 チェバ共役点
X 74 -Ceva conjugate of X 184
f ( a , b , c ) = a 4 [ ( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] f(a,b,c)=a^4[(b^2+c^2-a^2)^2-b^2c^2] f ( a , b , c ) = a 4 [( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ]
X 51
垂足三角形の重心
centroid of the orthic triangle
f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2[a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 52
垂足三角形の垂心
orthocenter of the orthic triangle
f ( a , b , c ) = a 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2[a^4-2a^2(b^2+c^2)+b^4+c^4][a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = a 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 53
垂足三角形の類似重心
symmedian point of the orthic triangle
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=(c^2+a^2-b^2)(a^2+b^2-c^2)[a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 54
コスニタ点
(九点円の中心の等角共役点)
Kosnita point
(isogonal conjugate of the nine-point center)
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 g(a,b,c)=a^2(b^2+c^2)-(b^2-c^2)^2 g ( a , b , c ) = a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
X 55
外接円と内接円の内部相似中心
(ジェルゴンヌ点の等角共役点)
insimilicenter of the circumcenter and the incenter
(isogonal conjugate of the Gergonne point)
f ( a , b , c ) = a 2 ( b + c − a ) f(a,b,c)=a^2(b+c-a) f ( a , b , c ) = a 2 ( b + c − a )
X 56
外接円と内接円の外部相似中心
(ナーゲル点の等角共役点)
(第一オデーナル点の等距離共役点)
exsimilicenter of the circumcenter and the incenter
(isogonal conjugate of the Nagel point)
(isotomic conjugate of the first Odehnal point)
f ( a , b , c ) = a 2 b + c − a f(a,b,c)=\dfrac{a^2}{b+c-a} f ( a , b , c ) = b + c − a a 2
別解
f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) f(a,b,c)=a^2(c+a-b)(a+b-c) f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c )
X 57
ミッテンプンクトの等角共役点
(元の三角形とミッテンプンクトの外向三角形との配景の中心)
isogonal conjugate of the mittenpunkt
(perspector of the reference triangle and the extraversion triangle of the mittenpunkt)
f ( a , b , c ) = a b + c − a f(a,b,c)=\dfrac{a}{b+c-a} f ( a , b , c ) = b + c − a a
別解
f ( a , b , c ) = a ( c + a − b ) ( a + b − c ) f(a,b,c)=a(c+a-b)(a+b-c) f ( a , b , c ) = a ( c + a − b ) ( a + b − c )
X 58
シュピーカー心の等角共役点
isogonal conjugate of the Spieker center
f ( a , b , c ) = a 2 b + c f(a,b,c)=\dfrac{a^2}{b+c} f ( a , b , c ) = b + c a 2
別解
f ( a , b , c ) = a 2 ( c + a ) ( a + b ) f(a,b,c)=a^2(c+a)(a+b) f ( a , b , c ) = a 2 ( c + a ) ( a + b )
X 59
フォイエルバッハ点の等角共役点
isogonal conjugate of the Feuerbach point
f ( a , b , c ) = a 2 ( c − a ) 2 ( a − b ) 2 b + c − a f(a,b,c)=\dfrac{a^2(c-a)^2(a-b)^2}{b+c-a} f ( a , b , c ) = b + c − a a 2 ( c − a ) 2 ( a − b ) 2
別解
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b − c ) 2 ( b + c − a ) g(a,b,c)=(b-c)^2(b+c-a) g ( a , b , c ) = ( b − c ) 2 ( b + c − a )
X 60
X 12 の等角共役点
isogonal conjugate of X 12
f ( a , b , c ) = a 2 ( b + c − a ) ( b + c ) 2 f(a,b,c)=\dfrac{a^2(b+c-a)}{(b+c)^2} f ( a , b , c ) = ( b + c ) 2 a 2 ( b + c − a )
別解
f ( a , b , c ) = a 2 ( c + a ) 2 ( a + b ) 2 ( b + c − a ) f(a,b,c)=a^2(c+a)^2(a+b)^2(b+c-a) f ( a , b , c ) = a 2 ( c + a ) 2 ( a + b ) 2 ( b + c − a )
X 61
第一ナポレオン点の等角共役点
isogonal conjugate of the first Napoleon point
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + 4 3 Δ ) f(a,b,c)=a^2(b^2+c^2-a^2+4\sqrt{3}\Delta) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + 4 3 Δ )
X 62
第二ナポレオン点の等角共役点
isogonal conjugate of the second Napoleon point
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − 4 3 Δ ) f(a,b,c)=a^2(b^2+c^2-a^2-4\sqrt{3}\Delta) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − 4 3 Δ )
X 63
クローソン点の等角共役点
isogonal conjugate of the Clawson point
f ( a , b , c ) = a ( b 2 + c 2 − a 2 ) f(a,b,c)=a(b^2+c^2-a^2) f ( a , b , c ) = a ( b 2 + c 2 − a 2 )
X 64
ド・ロンシャン点の等角共役点
isogonal conjugate of the de Longchamps point
f ( a , b , c ) = a 2 [ a 4 + 2 a 2 ( b 2 − c 2 ) − ( b 2 − c 2 ) ( 3 b 2 + c 2 ) ] [ a 4 − 2 a 2 ( b 2 − c 2 ) + ( b 2 − c 2 ) ( b 2 + 3 c 2 ) ] f(a,b,c)=a^2[a^4+2a^2(b^2-c^2)-(b^2-c^2)(3b^2+c^2)][a^4-2a^2(b^2-c^2)+(b^2-c^2)(b^2+3c^2)] f ( a , b , c ) = a 2 [ a 4 + 2 a 2 ( b 2 − c 2 ) − ( b 2 − c 2 ) ( 3 b 2 + c 2 )] [ a 4 − 2 a 2 ( b 2 − c 2 ) + ( b 2 − c 2 ) ( b 2 + 3 c 2 )]
別表現
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ] g(a,b,c)=-3a^4+2a^2(b^2+c^2)+(b^2-c^2)^2] g ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ]
X 65
ジェルゴンヌ三角形の垂心
(シフラー点の等角共役点)
orthocenter of the Gergonne triangle
(isogonal conjugate of the Schiffler point)
f ( a , b , c ) = a ( b + c ) b + c − a f(a,b,c)=\dfrac{a(b+c)}{b+c-a} f ( a , b , c ) = b + c − a a ( b + c )
別解
f ( a , b , c ) = a ( b + c ) ( c + a − b ) ( a + b − c ) f(a,b,c)=a(b+c)(c+a-b)(a+b-c) f ( a , b , c ) = a ( b + c ) ( c + a − b ) ( a + b − c )
X 66
エクセター点の等角共役点
isogonal conjugate of the Exeter point
f ( a , b , c ) = ( c 4 + a 4 − b 4 ) ( a 4 + b 4 − c 4 ) f(a,b,c)=(c^4+a^4-b^4)(a^4+b^4-c^4) f ( a , b , c ) = ( c 4 + a 4 − b 4 ) ( a 4 + b 4 − c 4 )
X 67
遥遠点(仮称)の等角共役点
isogonal conjugate of the far-out point
f ( a , b , c ) = ( c 4 + a 4 − b 4 − c 2 a 2 ) ( a 4 + b 4 − c 4 − a 2 b 2 ) f(a,b,c)=(c^4+a^4-b^4-c^2a^2)(a^4+b^4-c^4-a^2b^2) f ( a , b , c ) = ( c 4 + a 4 − b 4 − c 2 a 2 ) ( a 4 + b 4 − c 4 − a 2 b 2 )
X 68
プラソロフ点
(X 24 の等角共役点)
Prasolov point
(isogonal conjugate of the perspector of X 24 )
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) [ 2 c 2 a 2 − ( c 2 + a 2 − b 2 ) 2 ] [ 2 a 2 b 2 − ( a 2 + b 2 − c 2 ) 2 ] f(a,b,c)=(b^2+c^2-a^2)[2c^2a^2-(c^2+a^2-b^2)^2][2a^2b^2-(a^2+b^2-c^2)^2] f ( a , b , c ) = ( b 2 + c 2 − a 2 ) [ 2 c 2 a 2 − ( c 2 + a 2 − b 2 ) 2 ] [ 2 a 2 b 2 − ( a 2 + b 2 − c 2 ) 2 ]
別表現
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) [ a 4 − 2 a 2 b 2 + ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 c 2 + ( b 2 − c 2 ) 2 ] f(a,b,c)=(b^2+c^2-a^2)[a^4-2a^2b^2+(b^2-c^2)^2][a^4-2a^2c^2+(b^2-c^2)^2] f ( a , b , c ) = ( b 2 + c 2 − a 2 ) [ a 4 − 2 a 2 b 2 + ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 c 2 + ( b 2 − c 2 ) 2 ]
X 69
反中点三角形の類似重心
(X 25 の等角共役点)
(垂心の等距離共役点)
symmedian point of the anticomplementary triangle
(isogonal conjugate of X 25 )
(isotomic conjugate of the orthocenter)
f ( a , b , c ) = b 2 + c 2 − a 2 f(a,b,c)=b^2+c^2-a^2 f ( a , b , c ) = b 2 + c 2 − a 2
X 70
X 26 の等角共役点
isogonal conjugate of X 26
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 8 − 2 a 6 ( b 2 + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + c 4 ) g(a,b,c)=a^8-2a^6(b^2+c^2)+2a^2(b^2+c^2)(b^4-b^2c^2+c^4)-(b^2-c^2)^2(b^4+c^4) g ( a , b , c ) = a 8 − 2 a 6 ( b 2 + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + c 4 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = b 4 ( c 2 + a 2 − b 2 ) 2 + c 4 ( a 2 + b 2 − c 2 ) 2 − a 4 ( b 2 + c 2 − a 2 ) 2 + 2 a 2 b 2 c 2 ( b 2 + c 2 − a 2 ) g(a,b,c)=b^4(c^2+a^2-b^2)^2+c^4(a^2+b^2-c^2)^2-a^4(b^2+c^2-a^2)^2+2a^2b^2c^2(b^2+c^2-a^2) g ( a , b , c ) = b 4 ( c 2 + a 2 − b 2 ) 2 + c 4 ( a 2 + b 2 − c 2 ) 2 − a 4 ( b 2 + c 2 − a 2 ) 2 + 2 a 2 b 2 c 2 ( b 2 + c 2 − a 2 )
X 71
X 27 の等角共役点
isogonal conjugate of X 27
f ( a , b , c ) = a 2 ( b + c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a^2(b+c)(b^2+c^2-a^2) f ( a , b , c ) = a 2 ( b + c ) ( b 2 + c 2 − a 2 )
X 72
X 28 の等角共役点
(シュピーカー心のナーゲル点チェバ共役点)
isogonal conjugate of X 28
(Nagel-point-Ceva conjugate of the Spieker center)
f ( a , b , c ) = a ( b + c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a(b+c)(b^2+c^2-a^2) f ( a , b , c ) = a ( b + c ) ( b 2 + c 2 − a 2 )
X 73
X 29 の等角共役点
(内心と外心の交叉点)
isogonal conjugate of X 29
(crosspoint of the incenter and the circumcenter)
f ( a , b , c ) = a 2 ( b + c ) ( b 2 + c 2 − a 2 ) b + c − a f(a,b,c)=\dfrac{a^2(b+c)(b^2+c^2-a^2)}{b+c-a} f ( a , b , c ) = b + c − a a 2 ( b + c ) ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = a 2 ( b + c ) ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a^2(b+c)(c+a-b)(a+b-c)(b^2+c^2-a^2) f ( a , b , c ) = a 2 ( b + c ) ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 )
X 74
オイラー無限遠点の等角共役点
(第一等力点と第二等力点のチェバ点)
( Λ(重心, 外心) )
isogonal conjugate of the Euler infinity point
(cevapoint of the first and second isonynamic points)
( Λ(centroid, circumcenter) )
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 g(a,b,c)=2a^4-a^2(b^2+c^2)-(b^2-c^2)^2 g ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
X 75
内心の等距離共役点
(三線二乗点の等角共役点)
isotomic conjugate of the incenter
(isogonal conjugate of the trilinear second power point)
f ( a , b , c ) = 1 a f(a,b,c)=\dfrac{1}{a} f ( a , b , c ) = a 1
別解
f ( a , b , c ) = b c f(a,b,c)=bc f ( a , b , c ) = b c
X 76
第三ブロカール点
(三線三乗点の等角共役点)
(類似重心の等距離共役点)
third Brocard point
(isogonal conjugate of the trilinear third power point)
(isotomic conjugate of the symmedian point)
f ( a , b , c ) = 1 a 2 f(a,b,c)=\dfrac{1}{a^2} f ( a , b , c ) = a 2 1
別解
f ( a , b , c ) = b 2 c 2 f(a,b,c)=b^2c^2 f ( a , b , c ) = b 2 c 2
X 77
X 33 の等角共役点
isogonal conjugate of X 33
f ( a , b , c ) = a ( b 2 + c 2 − a 2 ) b + c − a f(a,b,c)=\dfrac{a(b^2+c^2-a^2)}{b+c-a} f ( a , b , c ) = b + c − a a ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = a ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a(c+a-b)(a+b-c)(b^2+c^2-a^2) f ( a , b , c ) = a ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 )
X 78
X 34 の等角共役点
isogonal conjugate of X 34
f ( a , b , c ) = a ( b + c − a ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a(b+c-a)(b^2+c^2-a^2) f ( a , b , c ) = a ( b + c − a ) ( b 2 + c 2 − a 2 )
X 79
X 35 の等角共役点
isogonal conjugate of X 35
f ( a , b , c ) = ( c 2 + a 2 − b 2 + c a ) ( a 2 + b 2 − c 2 + a b ) f(a,b,c)=(c^2+a^2-b^2+ca)(a^2+b^2-c^2+ab) f ( a , b , c ) = ( c 2 + a 2 − b 2 + c a ) ( a 2 + b 2 − c 2 + ab )
X 80
内心のフォイエルバッハ点に関する鏡映
(X 36 の等角共役点)
(内心のフールマン円についての反転)
reflection of the incenter in the Feuerbach point
(isogonal conjugate of X 36 )
(inverse-in-Fuhrmann-circle of the incenter)
f ( a , b , c ) = ( c 2 + a 2 − b 2 − c a ) ( a 2 + b 2 − c 2 − a b ) f(a,b,c)=(c^2+a^2-b^2-ca)(a^2+b^2-c^2-ab) f ( a , b , c ) = ( c 2 + a 2 − b 2 − c a ) ( a 2 + b 2 − c 2 − ab )
X 81
内心と類似重心のチェバ点
(X 37 の等角共役点)
cevapoint of the incenter and the symmedian point
(isogonal conjugate of X 37
f ( a , b , c ) = a b + c f(a,b,c)=\dfrac{a}{b+c} f ( a , b , c ) = b + c a
別解
f ( a , b , c ) = a ( c + a ) ( a + b ) f(a,b,c)=a(c+a)(a+b) f ( a , b , c ) = a ( c + a ) ( a + b )
X 82
X 38 の等角共役点
(内心と三線二乗点のチェバ点)
isogonal conjugate of X 38
(cevapoint of the incenter and the trilinear second power point)
f ( a , b , c ) = a b 2 + c 2 f(a,b,c)=\dfrac{a}{b^2+c^2} f ( a , b , c ) = b 2 + c 2 a
別解
f ( a , b , c ) = a ( c 2 + a 2 ) ( a 2 + b 2 ) f(a,b,c)=a(c^2+a^2)(a^2+b^2) f ( a , b , c ) = a ( c 2 + a 2 ) ( a 2 + b 2 )
X 83
重心と類似重心のチェバ点
(ブロカール中点の等角共役点)
cevapoint of the centroid and the symmedian point
(isogonal conjugate of X 39
f ( a , b , c ) = 1 b 2 + c 2 f(a,b,c)=\dfrac{1}{b^2+c^2} f ( a , b , c ) = b 2 + c 2 1
別解
f ( a , b , c ) = ( c 2 + a 2 ) ( a 2 + b 2 ) f(a,b,c)=(c^2+a^2)(a^2+b^2) f ( a , b , c ) = ( c 2 + a 2 ) ( a 2 + b 2 )
X 84
ベバン点の等角共役点
(元の三角形とベバン点の外向三角形との配景の中心)
isogonal conjugate of the Bevan point
(perspector of the reference triangle and the extraversion triangle of the Bevan point)
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = b c + a − b + c a + b − c − a b + c − a g(a,b,c)=\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}-\dfrac{a}{b+c-a} g ( a , b , c ) = c + a − b b + a + b − c c − b + c − a a
別解
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( b + c ) ( b − c ) 2 g(a,b,c)=a^3+a^2(b+c)-a(b+c)^2-(b+c)(b-c)^2 g ( a , b , c ) = a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( b + c ) ( b − c ) 2
X 85
ミッテンプンクトの等距離共役点
(X 41 の等角共役点)
isotomic conjugate of the mittenpunkt
(isogonal conjugate of X 41 )
f ( a , b , c ) = 1 a ( b + c − a ) f(a,b,c)=\dfrac{1}{a(b+c-a)} f ( a , b , c ) = a ( b + c − a ) 1
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b + c − a ) g(a,b,c)=a(b+c-a) g ( a , b , c ) = a ( b + c − a )
X 86
内心と重心のチェバ点
(X 42 の等角共役点)
(シュピーカー心の等距離共役点)
cevapoint of the incenter and the centroid
(isogonal conjugate of X 42 )
(isotomic conjugate of the Spieker center)
f ( a , b , c ) = 1 b + c f(a,b,c)=\dfrac{1}{b+c} f ( a , b , c ) = b + c 1
別解
f ( a , b , c ) = ( c + a ) ( a + b ) f(a,b,c)=(c+a)(a+b) f ( a , b , c ) = ( c + a ) ( a + b )
X 87
内心の重心交叉共役点
(X 43 の等角共役点)
(元の三角形とX 43 の外向三角形との配景の中心)
centroid-cross conjugate of the incenter
(isogonal conjugate of X 43 )
(perspector of the reference triangle and the extraversion triangle of X 43 )
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( 1 b + 1 c ) − 1 g(a,b,c)=a\left(\dfrac1b+\dfrac1c\right)-1 g ( a , b , c ) = a ( b 1 + c 1 ) − 1
別解
f ( a , b , c ) = a ( b c + b a − c a ) ( c a + c b − a b ) f(a,b,c)=a(bc+ba-ca)(ca+cb-ab) f ( a , b , c ) = a ( b c + ba − c a ) ( c a + c b − ab )
X 88
X 44 の等角共役点
(元の三角形とX 44 の外向三角形との配景の中心)
isogonal conjugate of X 44
(perspector of the reference triangle and the extraversion triangle of X 44 )
f ( a , b , c ) = a ( c + a − 2 b ) ( a + b − 2 c ) f(a,b,c)=a(c+a-2b)(a+b-2c) f ( a , b , c ) = a ( c + a − 2 b ) ( a + b − 2 c )
X 89
X 45 の等角共役点
(元の三角形とX 45 の外向三角形との配景の中心)
isogonal conjugate of X 45
(perspector of the reference triangle and the extraversion triangle of X 45 )
f ( a , b , c ) = a ( 2 c + 2 a − b ) ( 2 a + 2 b − c ) f(a,b,c)=a(2c+2a-b)(2a+2b-c) f ( a , b , c ) = a ( 2 c + 2 a − b ) ( 2 a + 2 b − c )
X 90
内心の外心交叉共役点
(X 46 の等角共役点)
(元の三角形とX 46 の外向三角形との配景の中心)
circumcenter-cross conjugate of the incenter
(isogonal conjugate of X 46 )
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = b ( c 2 + a 2 − b 2 ) + c ( a 2 + b 2 − c 2 ) − a ( b 2 + c 2 − a 2 ) g(a,b,c)=b(c^2+a^2-b^2)+c(a^2+b^2-c^2)-a(b^2+c^2-a^2) g ( a , b , c ) = b ( c 2 + a 2 − b 2 ) + c ( a 2 + b 2 − c 2 ) − a ( b 2 + c 2 − a 2 )
別表現1
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c ) g(a,b,c)=a^3+a^2(b+c)-a(b^2+c^2)-(b-c)^2(b+c) g ( a , b , c ) = a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c )
別表現2
f ( a , b , c ) = a [ a 3 + a 2 ( b − c ) − a ( b 2 + c 2 ) − ( b − c ) ( b + c ) 2 ] [ a 3 − a 2 ( b − c ) − a ( b 2 + c 2 ) + ( b − c ) ( b + c ) 2 ] f(a,b,c)=a[a^3+a^2(b-c)-a(b^2+c^2)-(b-c)(b+c)^2][a^3-a^2(b-c)-a(b^2+c^2)+(b-c)(b+c)^2] f ( a , b , c ) = a [ a 3 + a 2 ( b − c ) − a ( b 2 + c 2 ) − ( b − c ) ( b + c ) 2 ] [ a 3 − a 2 ( b − c ) − a ( b 2 + c 2 ) + ( b − c ) ( b + c ) 2 ]
別表現3
f ( a , b , c ) = a [ a 2 ( b 2 + c 2 − a 2 ) 2 − ( b − c ) 2 ( a + b + c ) 2 ( b + c − a ) 2 ] f(a,b,c)=a[a^2(b^2+c^2-a^2)^2-(b-c)^2(a+b+c)^2(b+c-a)^2] f ( a , b , c ) = a [ a 2 ( b 2 + c 2 − a 2 ) 2 − ( b − c ) 2 ( a + b + c ) 2 ( b + c − a ) 2 ]
X 91
X 47 の等角共役点
isogonal conjugate of X 47
f ( a , b , c ) = b c [ ( c 2 + a 2 − b 2 ) 2 − 2 c 2 a 2 ] [ ( a 2 + b 2 − c 2 ) 2 − 2 a 2 b 2 ] f(a,b,c)=bc[(c^2+a^2-b^2)^2-2c^2a^2][(a^2+b^2-c^2)^2-2a^2b^2] f ( a , b , c ) = b c [( c 2 + a 2 − b 2 ) 2 − 2 c 2 a 2 ] [( a 2 + b 2 − c 2 ) 2 − 2 a 2 b 2 ]
X 92
内心とクローソン点のチェバ点
(X 48 の等角共役点)
(X 63 の等距離共役点)
cevapoint of the incenter and the Clawson point
(isogonal conjugate of X 48 )
(isotomic conjugate of X 63 )
f ( a , b , c ) = b c ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=bc(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = b c ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 93
正弦三倍角円の中心の等角共役点
isogonal conjugate of the center of the sine-triple angle center
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ ( b 2 + c 2 − a 2 ) 2 − 3 b 2 c 2 ] g(a,b,c)=a^2(b^2+c^2-a^2)[(b^2+c^2-a^2)^2-3b^2c^2] g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [( b 2 + c 2 − a 2 ) 2 − 3 b 2 c 2 ]
X 94
X 50 の等角共役点
isogonal conjugate of X 50
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 [ ( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] g(a,b,c)=a^2[(b^2+c^2-a^2)^2-b^2c^2] g ( a , b , c ) = a 2 [( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ]
X 95
重心と外心のチェバ点
(X 51 の等角共役点)
(九点円の中心の等距離共役点)
cevapoint of the centroid and the circumcenter
(isogonal conjugate of X 51 )
(isotomic conjugate of the nine-point center)
f ( a , b , c ) = [ b 2 ( c 2 + a 2 ) − ( c 2 − a 2 ) 2 ] [ c 2 ( a 2 + b 2 ) − ( a 2 − b 2 ) 2 ] f(a,b,c)=[b^2(c^2+a^2)-(c^2-a^2)^2][c^2(a^2+b^2)-(a^2-b^2)^2] f ( a , b , c ) = [ b 2 ( c 2 + a 2 ) − ( c 2 − a 2 ) 2 ] [ c 2 ( a 2 + b 2 ) − ( a 2 − b 2 ) 2 ]
X 96
X 52 の等角共役点
(外心とプラソロフ点のチェバ点)
isogonal conjugate of X 52
(cevapoint of the circumcenter and the Prasolov point)
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] g(a,b,c)=[a^4-2a^2(b^2+c^2)+b^4+c^4][a^2(b^2+c^2)-(b^2-c^2)^2] g ( a , b , c ) = [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 97
X 53 の等角共役点
isogonal conjugate of X 53
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2(b^2+c^2-a^2)g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 g(a,b,c)=a^2(b^2+c^2)-(b^2-c^2)^2 g ( a , b , c ) = a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
X 98
タリー点
( Λ(外心, 類似重心) )
Tarry point
( Λ(circumcenter, symmedian point) )
f ( a , b , c ) = ( a 4 + b 4 − a 2 c 2 − b 2 c 2 ) ( a 4 + c 4 − a 2 b 2 − b 2 c 2 ) f(a,b,c)=(a^4+b^4-a^2c^2-b^2c^2)(a^4+c^4-a^2b^2-b^2c^2) f ( a , b , c ) = ( a 4 + b 4 − a 2 c 2 − b 2 c 2 ) ( a 4 + c 4 − a 2 b 2 − b 2 c 2 )
X 99
シュタイナー点
Steiner point
f ( a , b , c ) = ( a 2 − b 2 ) ( a 2 − c 2 ) f(a,b,c)=(a^2-b^2)(a^2-c^2) f ( a , b , c ) = ( a 2 − b 2 ) ( a 2 − c 2 )
X 100
フォイエルバッハ点の反補点
( Ψ(内心, 重心) )
( Ψ(垂心, ナーゲル点) )
( Ψ(類似重心, 内心) )
( Ψ(ジェルゴンヌ点, ナーゲル点) )
anticomplement of the Feuerbach point
( Ψ(incenter, centroid) )
( Ψ(orthocenter, Nagel point) )
( Ψ(symmedian point, incenter) )
( Ψ(Gergonne point, Nagel point) )
f ( a , b , c ) = a ( a − b ) ( a − c ) f(a,b,c)=a(a-b)(a-c) f ( a , b , c ) = a ( a − b ) ( a − c )
X 101
イフ放物線の焦点
( Ψ(重心, 内心) )
( Ψ(ジェルゴンヌ点, 重心) )
focus of the Yff Parabola
( Ψ(centroid, incenter) )
( Ψ(Gergonne point, centroid) )
f ( a , b , c ) = a 2 ( a − b ) ( a − c ) f(a,b,c)=a^2(a-b)(a-c) f ( a , b , c ) = a 2 ( a − b ) ( a − c )
X 102
Λ(内心, 垂心)
Λ(incenter, orthocenter)
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 2 a 4 − a 3 ( b + c ) − a 2 ( b − c ) 2 + a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b + c ) 2 g(a,b,c)=2a^4-a^3(b+c)-a^2(b-c)^2+a(b-c)^2(b+c)-(b-c)^2(b+c)^2 g ( a , b , c ) = 2 a 4 − a 3 ( b + c ) − a 2 ( b − c ) 2 + a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b + c ) 2
X 103
Λ(内心, ジェルゴンヌ点)
Λ(incenter, Gergonne point)
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 2 a 3 − a 2 ( b + c ) − ( b − c ) 2 ( b + c ) g(a,b,c)=2a^3-a^2(b+c)-(b-c)^2(b+c) g ( a , b , c ) = 2 a 3 − a 2 ( b + c ) − ( b − c ) 2 ( b + c )
X 104
Λ(内心, 外心)
Λ(incenter, circumcenter)
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b + c ) − 2 a b c − ( b − c ) 2 ( b + c ) g(a,b,c)=a^2(b+c)-2abc-(b-c)^2(b+c) g ( a , b , c ) = a 2 ( b + c ) − 2 ab c − ( b − c ) 2 ( b + c )
X 105
Λ(内心, 類似重心)
Λ(incenter, symmedian point)
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b + c ) − ( b 2 + c 2 ) g(a,b,c)=a(b+c)-(b^2+c^2) g ( a , b , c ) = a ( b + c ) − ( b 2 + c 2 )
X 106
Λ(内心, 重心)
Λ(incenter, centroid)
f ( a , b , c ) = a 2 ( a − 2 b + c ) ( a + b − 2 c ) f(a,b,c)=a^2(a-2b+c)(a+b-2c) f ( a , b , c ) = a 2 ( a − 2 b + c ) ( a + b − 2 c )
X 107
Ψ(類似重心, 垂心)
(Ψ(外心, 重心))
Ψ(symmedian point, orthocenter)
(Ψ(circumcenter, centroid))
f ( a , b , c ) = ( a 2 − b 2 ) ( a 2 − c 2 ) ( a 2 − b 2 + c 2 ) 2 ( a 2 + b 2 − c 2 ) 2 f(a,b,c)=(a^2-b^2)(a^2-c^2)(a^2-b^2+c^2)^2(a^2+b^2-c^2)^2 f ( a , b , c ) = ( a 2 − b 2 ) ( a 2 − c 2 ) ( a 2 − b 2 + c 2 ) 2 ( a 2 + b 2 − c 2 ) 2
X 108
Ψ(外心, 内心)
(Ψ(内心, 垂心))
Ψ(circumcenter, incenter)
(Ψ(incenter, orthocenter))
f ( a , b , c ) = a ( a − b ) ( a − c ) ( a − b + c ) ( a − b + c ) ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a(a-b)(a-c)(a-b+c)(a-b+c)(a^2-b^2+c^2)(a^2+b^2-c^2) f ( a , b , c ) = a ( a − b ) ( a − c ) ( a − b + c ) ( a − b + c ) ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 )
X 109
Ψ(内心, 外心)
(Ψ(垂心, 内心))
(Ψ(重心, ジェルゴンヌ点))
Ψ(circumcenter, incenter)
(Ψ(orthocenter, incenter))
(Ψ(centroid, Gergonne point))
f ( a , b , c ) = a 2 ( a − b ) ( a − c ) ( c + a − b ) ( a − b + c ) f(a,b,c)=a^2(a-b)(a-c)(c+a-b)(a-b+c) f ( a , b , c ) = a 2 ( a − b ) ( a − c ) ( c + a − b ) ( a − b + c )
X 110
キーペルト放物線の焦点
(シュタムラー双曲線の中心)
focus of the Kiepert parabola
(center of the Stammler hyperbola)
f ( a , b , c ) = a 2 ( a 2 − b 2 ) ( a 2 − c 2 ) f(a,b,c)=a^2(a^2-b^2)(a^2-c^2) f ( a , b , c ) = a 2 ( a 2 − b 2 ) ( a 2 − c 2 )
X 111
パリー点
( Λ(重心, 類似重心) )
Parry point
( Λ(centroid, symmedian point) )
f ( a , b , c ) = a 2 ( a 2 − 2 b 2 + c 2 ) ( a 2 + b 2 − 2 c 2 ) f(a,b,c)=a^2(a^2-2b^2+c^2)(a^2+b^2-2c^2) f ( a , b , c ) = a 2 ( a 2 − 2 b 2 + c 2 ) ( a 2 + b 2 − 2 c 2 )
X 112
Ψ(垂心, 類似重心)
(Ψ(重心, 外心))
(Ψ(外心, 類似重心))
Ψ(orthocenter, symmedian point)
(Ψ(centroid, circumcenter))
(Ψ(circumcenter, symmedian point))
f ( a , b , c ) = a 2 ( a 2 − b 2 ) ( a 2 − c 2 ) ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a^2(a^2-b^2)(a^2-c^2)(a^2-b^2+c^2)(a^2+b^2-c^2) f ( a , b , c ) = a 2 ( a 2 − b 2 ) ( a 2 − c 2 ) ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 )
X 113
ジェラベック対蹠点
(オイラー無限遠点の垂心チェバ共役点)
Jerabek antipode
(orthocenter-ceva conjugate of the Euler infinity point)
f ( a , b , c ) = [ 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 4 ( b 2 + c 2 ) − 2 a 2 ( b 4 − b 2 c 2 + c 4 ) + ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] f(a,b,c)=[2a^4-a^2(b^2+c^2)-(b^2-c^2)^2][a^4(b^2+c^2)-2a^2(b^4-b^2c^2+c^4)+(b^2-c^2)^2(b^2+c^2)] f ( a , b , c ) = [ 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 4 ( b 2 + c 2 ) − 2 a 2 ( b 4 − b 2 c 2 + c 4 ) + ( b 2 − c 2 ) 2 ( b 2 + c 2 )]
X 114
キーペルト対蹠点
(垂心とシュタイナー点の中点)
Kiepert antipode
(midpoint of the orthocenter and the Steiner point)
f ( a , b , c ) = [ 2 a 4 − a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ] [ a 2 ( b 2 + c 2 ) − ( b 4 + c 4 ) ] f(a,b,c)=[2a^4-a^2(b^2+c^2)+(b^2-c^2)^2][a^2(b^2+c^2)-(b^4+c^4)] f ( a , b , c ) = [ 2 a 4 − a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ] [ a 2 ( b 2 + c 2 ) − ( b 4 + c 4 )]
X 115
キーペルト双曲線の中心
(第一等角心と第二等角心の中点)
center of the Kiepert hyperbola
(midpoint of the first and second isogonic points)
f ( a , b , c ) = ( b 2 − c 2 ) 2 f(a,b,c)=(b^2-c^2)^2 f ( a , b , c ) = ( b 2 − c 2 ) 2
X 116
垂心とX 103 の中点
midpoint of the orthocenter and X 103
f ( a , b , c ) = ( b − c ) 2 [ − a ( b + c ) + b 2 + b c + c 2 ] f(a,b,c)=(b-c)^2[-a(b+c)+b^2+bc+c^2] f ( a , b , c ) = ( b − c ) 2 [ − a ( b + c ) + b 2 + b c + c 2 ]
X 117
垂心とX 109 の中点
midpoint of the orthocenter and X 109
f ( a , b , c ) = [ 2 a 4 − a 3 ( b + c ) − a 2 ( b − c ) 2 + a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b + c ) 2 ] [ a 4 ( b 2 + c 2 ) − a 3 b c ( b + c ) − a 2 ( b − c ) 2 ( 2 b 2 + 3 b c + 2 c 2 ) + a b c ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2 ( b 2 − b c + c 2 ) ] f(a,b,c)=[2a^4-a^3(b+c)-a^2(b-c)^2+a(b-c)^2(b+c)-(b-c)^2(b+c)^2][a^4(b^2+c^2)-a^3bc(b+c)-a^2(b-c)^2(2b^2+3bc+2c^2)+abc(b-c)^2(b+c)+(b-c)^2(b+c)^2(b^2-bc+c^2)] f ( a , b , c ) = [ 2 a 4 − a 3 ( b + c ) − a 2 ( b − c ) 2 + a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b + c ) 2 ] [ a 4 ( b 2 + c 2 ) − a 3 b c ( b + c ) − a 2 ( b − c ) 2 ( 2 b 2 + 3 b c + 2 c 2 ) + ab c ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2 ( b 2 − b c + c 2 )]
X 118
垂心とX 101 の中点
midpoint of the orthocenter and X 101
f ( a , b , c ) = [ 2 a 3 − a 2 ( b + c ) − ( b − c ) 2 ( b + c ) ] [ a 3 ( b 2 + c 2 ) − a 2 ( b + c ) ( b 2 − b c + c 2 ) − a ( b − c ) 2 ( b + c ) 2 + ( b − c ) 2 ( b + c ) ( b 2 + b c + c 2 ) ] f(a,b,c)=[2a^3-a^2(b+c)-(b-c)^2(b+c)][a^3(b^2+c^2)-a^2(b+c)(b^2-bc+c^2)-a(b-c)^2(b+c)^2+(b-c)^2(b+c)(b^2+bc+c^2)] f ( a , b , c ) = [ 2 a 3 − a 2 ( b + c ) − ( b − c ) 2 ( b + c )] [ a 3 ( b 2 + c 2 ) − a 2 ( b + c ) ( b 2 − b c + c 2 ) − a ( b − c ) 2 ( b + c ) 2 + ( b − c ) 2 ( b + c ) ( b 2 + b c + c 2 )]
X 119
フォイエルバッハ対蹠点
Feuerbach antipode
f ( a , b , c ) = [ a 2 ( b + c ) − 2 a b c − ( b − c ) 2 ( b + c ) ] [ a 3 ( b + c ) − a 2 ( b 2 + c 2 ) − a ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2 ] f(a,b,c)=[a^2(b+c)-2abc-(b-c)^2(b+c)][a^3(b+c)-a^2(b^2+c^2)-a(b-c)^2(b+c)+(b-c)^2(b+c)^2] f ( a , b , c ) = [ a 2 ( b + c ) − 2 ab c − ( b − c ) 2 ( b + c )] [ a 3 ( b + c ) − a 2 ( b 2 + c 2 ) − a ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2 ]
X 120
(名称検討中)
(name pending)
f ( a , b , c ) = [ a 2 ( b + c ) − 2 a b c + ( b − c ) 2 ( b + c ) ] [ a ( b + c ) − b 2 − c 2 ] f(a,b,c)=[a^2(b+c)-2abc+(b-c)^2(b+c)][a(b+c)-b^2-c^2] f ( a , b , c ) = [ a 2 ( b + c ) − 2 ab c + ( b − c ) 2 ( b + c )] [ a ( b + c ) − b 2 − c 2 ]
X 121
(名称検討中)
(name pending)
f ( a , b , c ) = ( 2 a − b − c ) [ a ( b 2 + c 2 ) + ( b + c ) ( b 2 − 3 b c + c 2 ) ] f(a,b,c)=(2a-b-c)[a(b^2+c^2)+(b+c)(b^2-3bc+c^2)] f ( a , b , c ) = ( 2 a − b − c ) [ a ( b 2 + c 2 ) + ( b + c ) ( b 2 − 3 b c + c 2 )]
X 122
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 − c 2 ) 2 ( b 2 + c 2 − a 2 ) 2 [ 3 a 4 − 2 a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=(b^2-c^2)^2(b^2+c^2-a^2)^2[3a^4-2a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = ( b 2 − c 2 ) 2 ( b 2 + c 2 − a 2 ) 2 [ 3 a 4 − 2 a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 123
(名称検討中)
(name pending)
f ( a , b , c ) = ( b + c − a ) ( b − c ) 2 ( b 2 + c 2 − a 2 ) [ a 4 + 2 a 2 b c − 2 a b c ( b + c ) − ( b − c ) 2 ( b + c ) 2 ] f(a,b,c)=(b+c-a)(b-c)^2(b^2+c^2-a^2)[a^4+2a^2bc-2abc(b+c)-(b-c)^2(b+c)^2] f ( a , b , c ) = ( b + c − a ) ( b − c ) 2 ( b 2 + c 2 − a 2 ) [ a 4 + 2 a 2 b c − 2 ab c ( b + c ) − ( b − c ) 2 ( b + c ) 2 ]
X 124
(名称検討中)
(name pending)
f ( a , b , c ) = ( b + c − a ) ( b − c ) 2 [ − a 2 ( b + c ) + a b c + ( b + c ) ( b 2 − b c + c 2 ) ] f(a,b,c)=(b+c-a)(b-c)^2[-a^2(b+c)+abc+(b+c)(b^2-bc+c^2)] f ( a , b , c ) = ( b + c − a ) ( b − c ) 2 [ − a 2 ( b + c ) + ab c + ( b + c ) ( b 2 − b c + c 2 )]
X 125
ジェラベック双曲線の中心
center of the Jerabek hyperbola
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) ( b 2 − c 2 ) 2 f(a,b,c)=(b^2+c^2-a^2)(b^2-c^2)^2 f ( a , b , c ) = ( b 2 + c 2 − a 2 ) ( b 2 − c 2 ) 2
X 126
(名称検討中)
(name pending)
f ( a , b , c ) = ( 2 a 2 − b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) + b 4 − 4 b 2 c 2 + c 4 ] f(a,b,c)=(2a^2-b^2-c^2)[a^2(b^2+c^2)+b^4-4b^2c^2+c^4] f ( a , b , c ) = ( 2 a 2 − b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) + b 4 − 4 b 2 c 2 + c 4 ]
X 127
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 − c 2 ) 2 ( b 2 + c 2 − a 2 ) ( b 4 + c 4 − a 4 ) f(a,b,c)=(b^2-c^2)^2(b^2+c^2-a^2)(b^4+c^4-a^4) f ( a , b , c ) = ( b 2 − c 2 ) 2 ( b 2 + c 2 − a 2 ) ( b 4 + c 4 − a 4 )
X 128
(名称検討中)
(name pending)
f ( a , b , c ) = [ ( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ 2 a 8 − 4 a 6 ( b 2 + c 2 ) + 3 a 4 ( b 4 + c 4 ) − 2 a 2 ( b 2 + c 2 ) ( b 2 − c 2 ) 2 + ( b 2 − c 2 ) 4 ] f(a,b,c)=[(b^2+c^2-a^2)^2-b^2c^2][a^2(b^2+c^2)-(b^2-c^2)^2][2a^8-4a^6(b^2+c^2)+3a^4(b^4+c^4)-2a^2(b^2+c^2)(b^2-c^2)^2+(b^2-c^2)^4] f ( a , b , c ) = [( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ 2 a 8 − 4 a 6 ( b 2 + c 2 ) + 3 a 4 ( b 4 + c 4 ) − 2 a 2 ( b 2 + c 2 ) ( b 2 − c 2 ) 2 + ( b 2 − c 2 ) 4 ]
X 129
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 8 − 2 a 6 ( b 2 + c 2 ) + a 4 ( b 4 + b 2 c 2 + c 4 ) + b 2 c 2 ( b 2 − c 2 ) 2 ] [ a 8 ( b 4 + c 4 ) − 4 a 6 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) + 2 a 4 ( 3 b 8 − b 6 c 2 − b 4 c 4 − b 2 c 6 + 3 c 8 ) − 4 a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ( b 4 + c 4 ) + ( b 2 − c 2 ) 2 ( b 8 + c 8 ) ] f(a,b,c)=a^2[a^2(b^2+c^2)-(b^2-c^2)^2][a^8-2a^6(b^2+c^2)+a^4(b^4+b^2c^2+c^4)+b^2c^2(b^2-c^2)^2][a^8(b^4+c^4)-4a^6(b^2+c^2)(b^4-b^2c^2+c^4)+2a^4(3b^8-b^6c^2-b^4c^4-b^2c^6+3c^8)-4a^2(b^2-c^2)^2(b^2+c^2)(b^4+c^4)+(b^2-c^2)^2(b^8+c^8)] f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 8 − 2 a 6 ( b 2 + c 2 ) + a 4 ( b 4 + b 2 c 2 + c 4 ) + b 2 c 2 ( b 2 − c 2 ) 2 ] [ a 8 ( b 4 + c 4 ) − 4 a 6 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) + 2 a 4 ( 3 b 8 − b 6 c 2 − b 4 c 4 − b 2 c 6 + 3 c 8 ) − 4 a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ( b 4 + c 4 ) + ( b 2 − c 2 ) 2 ( b 8 + c 8 )]
X 130
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( y + z ) ( y − z ) 2 ( x 2 + y z ) f(a,b,c)=a^2(y+z)(y-z)^2(x^2+yz) f ( a , b , c ) = a 2 ( y + z ) ( y − z ) 2 ( x 2 + yz )
ただし、
x = a 2 ( b 2 + c 2 − a 2 ) , x=a^2(b^2+c^2-a^2), x = a 2 ( b 2 + c 2 − a 2 ) ,
y = b 2 ( c 2 + a 2 − b 2 ) , y=b^2(c^2+a^2-b^2), y = b 2 ( c 2 + a 2 − b 2 ) ,
z = c 2 ( a 2 + b 2 − c 2 ) z=c^2(a^2+b^2-c^2) z = c 2 ( a 2 + b 2 − c 2 )
別表現
f ( a , b , c ) = a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 − a 2 ) 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 8 − 2 a 6 ( b 2 + c 2 ) + a 4 ( b 4 + 3 b 2 c 2 + c 4 ) − b 2 c 2 ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2(b^2-c^2)^2(b^2+c^2-a^2)^2[a^2(b^2+c^2)-(b^2-c^2)^2][a^8-2a^6(b^2+c^2)+a^4(b^4+3b^2c^2+c^4)-b^2c^2(b^2-c^2)^2] f ( a , b , c ) = a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 − a 2 ) 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 8 − 2 a 6 ( b 2 + c 2 ) + a 4 ( b 4 + 3 b 2 c 2 + c 4 ) − b 2 c 2 ( b 2 − c 2 ) 2 ]
X 131
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) [ 2 a 8 − 3 a 6 ( b 2 + c 2 ) + a 4 ( b 2 + c 2 ) 2 − a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 4 ] [ a 4 ( b 2 + c 2 ) − 2 a 2 ( b 4 − b 2 c 2 + c 4 ) + ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] f(a,b,c)=(b^2+c^2-a^2)[2a^8-3a^6(b^2+c^2)+a^4(b^2+c^2)^2-a^2(b^2-c^2)^2(b^2+c^2)+(b^2-c^2)^4][a^4(b^2+c^2)-2a^2(b^4-b^2c^2+c^4)+(b^2-c^2)^2(b^2+c^2)] f ( a , b , c ) = ( b 2 + c 2 − a 2 ) [ 2 a 8 − 3 a 6 ( b 2 + c 2 ) + a 4 ( b 2 + c 2 ) 2 − a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 4 ] [ a 4 ( b 2 + c 2 ) − 2 a 2 ( b 4 − b 2 c 2 + c 4 ) + ( b 2 − c 2 ) 2 ( b 2 + c 2 )]
X 132
(名称検討中)
(name pending)
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ 2 a 6 − a 4 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] [ a 2 ( b 2 + c 2 ) − ( b 4 + c 4 ) ] f(a,b,c)=(c^2+a^2-b^2)(a^2+b^2-c^2)[2a^6-a^4(b^2+c^2)-(b^2-c^2)^2(b^2+c^2)][a^2(b^2+c^2)-(b^4+c^4)] f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ 2 a 6 − a 4 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ( b 2 + c 2 )] [ a 2 ( b 2 + c 2 ) − ( b 4 + c 4 )]
X 133
(名称検討中)
(name pending)
f ( a , b , c ) = [ 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 6 ( b 2 + c 2 ) − a 4 ( 3 b 4 − 4 b 2 c 2 + 3 c 4 ) − 3 a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ( b 4 + 4 b 2 c 2 + c 4 ) ] f(a,b,c)=[2a^4-a^2(b^2+c^2)-(b^2-c^2)^2][a^6(b^2+c^2)-a^4(3b^4-4b^2c^2+3c^4)-3a^2(b^2-c^2)^2(b^2+c^2)-(b^2-c^2)^2(b^4+4b^2c^2+c^4)] f ( a , b , c ) = [ 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 6 ( b 2 + c 2 ) − a 4 ( 3 b 4 − 4 b 2 c 2 + 3 c 4 ) − 3 a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ( b 4 + 4 b 2 c 2 + c 4 )]
X 134
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( b 2 − c 2 ) 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 12 − 4 a 10 ( b 2 + c 2 ) + a 8 ( 6 b 4 + 5 b 2 c 2 + 6 c 4 ) − 2 a 6 ( b 2 + c 2 ) ( 2 b 4 − 3 b 2 c 2 + 2 c 4 ) + a 4 ( b 4 + c 4 ) ( b 4 − 4 b 2 c 2 + c 4 ) + 2 a 2 b 2 c 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) − b 2 c 2 ( b 2 − c 2 ) 4 ] f(a,b,c)=a^2(b^2-c^2)^2[a^4-2a^2(b^2+c^2)+b^4+c^4]^2[a^2(b^2+c^2)-(b^2-c^2)^2][a^{12}-4a^{10}(b^2+c^2)+a^8(6b^4+5b^2c^2+6c^4)-2a^6(b^2+c^2)(2b^4-3b^2c^2+2c^4)+a^4(b^4+c^4)(b^4-4b^2c^2+c^4)+2a^2b^2c^2(b^2-c^2)^2(b^2+c^2)-b^2c^2(b^2-c^2)^4] f ( a , b , c ) = a 2 ( b 2 − c 2 ) 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 12 − 4 a 10 ( b 2 + c 2 ) + a 8 ( 6 b 4 + 5 b 2 c 2 + 6 c 4 ) − 2 a 6 ( b 2 + c 2 ) ( 2 b 4 − 3 b 2 c 2 + 2 c 4 ) + a 4 ( b 4 + c 4 ) ( b 4 − 4 b 2 c 2 + c 4 ) + 2 a 2 b 2 c 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) − b 2 c 2 ( b 2 − c 2 ) 4 ]
X 135
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 − c 2 ) 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 4 − 2 a 2 ( b 2 + c 2 ) + ( b 4 + c 4 ) ] [ a 6 − 3 a 4 ( b 2 + c 2 ) + a 2 ( 3 b 4 − 2 b 2 c 2 + 3 c 4 ) − ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] f(a,b,c)=(b^2-c^2)^2(c^2+a^2-b^2)(a^2+b^2-c^2)[a^4-2a^2(b^2+c^2)+(b^4+c^4)][a^6-3a^4(b^2+c^2)+a^2(3b^4-2b^2c^2+3c^4)-(b^2-c^2)^2(b^2+c^2)] f ( a , b , c ) = ( b 2 − c 2 ) 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 4 − 2 a 2 ( b 2 + c 2 ) + ( b 4 + c 4 )] [ a 6 − 3 a 4 ( b 2 + c 2 ) + a 2 ( 3 b 4 − 2 b 2 c 2 + 3 c 4 ) − ( b 2 − c 2 ) 2 ( b 2 + c 2 )]
X 136
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 − c 2 ) 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] f(a,b,c)=(b^2-c^2)^2(c^2+a^2-b^2)(a^2+b^2-c^2)[a^4-2a^2(b^2+c^2)+b^4+c^4] f ( a , b , c ) = ( b 2 − c 2 ) 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ]
X 137
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 − c 2 ) 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 − b 2 c 2 + c 4 ] f(a,b,c)=(b^2-c^2)^2[a^2(b^2+c^2)-(b^2-c^2)^2][a^4-2a^2(b^2+c^2)+b^4-b^2c^2+c^4] f ( a , b , c ) = ( b 2 − c 2 ) 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 − b 2 c 2 + c 4 ]
X 138
(名称検討中)
(name pending)
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 8 − 2 a 6 ( b 2 + c 2 ) + a 4 ( 2 b 4 − b 2 c 2 + 2 c 4 ) − a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ( b 4 + 3 b 2 c 2 + c 4 ) ] g ( b , c , a ) g ( b , a , c ) g ( c , a , b ) g ( c , b , a ) f(a,b,c)=(c^2+a^2-b^2)(a^2+b^2-c^2)[a^2(b^2+c^2)-(b^2-c^2)^2][a^8-2a^6(b^2+c^2)+a^4(2b^4-b^2c^2+2c^4)-a^2(b^2-c^2)^2(b^2+c^2)+(b^2-c^2)^2(b^4+3b^2c^2+c^4)]g(b,c,a)g(b,a,c)g(c,a,b)g(c,b,a) f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 8 − 2 a 6 ( b 2 + c 2 ) + a 4 ( 2 b 4 − b 2 c 2 + 2 c 4 ) − a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ( b 4 + 3 b 2 c 2 + c 4 )] g ( b , c , a ) g ( b , a , c ) g ( c , a , b ) g ( c , b , a )
ただし、
g ( a , b , c ) = a 8 − 2 a 6 ( b 2 + c 2 ) − a 4 ( b 4 − 2 b 2 c 2 − 2 c 4 ) + a 2 ( b 2 − c 2 ) ( 2 b 4 + c 4 ) − ( b 2 − c 2 ) 2 ( 2 b 4 − c 4 ) g(a,b,c)=a^8-2a^6(b^2+c^2)-a^4(b^4-2b^2c^2-2c^4)+a^2(b^2-c^2)(2b^4+c^4)-(b^2-c^2)^2(2b^4-c^4) g ( a , b , c ) = a 8 − 2 a 6 ( b 2 + c 2 ) − a 4 ( b 4 − 2 b 2 c 2 − 2 c 4 ) + a 2 ( b 2 − c 2 ) ( 2 b 4 + c 4 ) − ( b 2 − c 2 ) 2 ( 2 b 4 − c 4 )
X 139
(名称検討中)
(name pending)
f ( a , b , c ) = ( b 2 − c 2 ) 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] [ a 12 − 4 a 10 ( b 2 + c 2 ) + a 8 ( 7 b 4 + 11 b 2 c 2 + 7 c 4 ) − 2 a 6 ( b 2 + c 2 ) ( 4 b 4 + b 2 c 2 + 4 c 4 ) + a 4 ( 7 b 8 + 2 b 4 c 4 + 7 c 8 ) − 2 a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ( 2 b 4 − b 2 c 2 + 2 c 4 ) + ( b 2 − c 2 ) 4 ( b 4 + b 2 c 2 + c 4 ) ] f(a,b,c)=(b^2-c^2)^2(c^2+a^2-b^2)(a^2+b^2-c^2)[a^2(b^2+c^2)-(b^2-c^2)^2][a^4-2a^2(b^2+c^2)+b^4+c^4][a^{12}-4a^{10}(b^2+c^2)+a^8(7b^4+11b^2c^2+7c^4)-2a^6(b^2+c^2)(4b^4+b^2c^2+4c^4)+a^4(7b^8+2b^4c^4+7c^8)-2a^2(b^2-c^2)^2(b^2+c^2)(2b^4-b^2c^2+2c^4)+(b^2-c^2)^4(b^4+b^2c^2+c^4)] f ( a , b , c ) = ( b 2 − c 2 ) 2 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] [ a 12 − 4 a 10 ( b 2 + c 2 ) + a 8 ( 7 b 4 + 11 b 2 c 2 + 7 c 4 ) − 2 a 6 ( b 2 + c 2 ) ( 4 b 4 + b 2 c 2 + 4 c 4 ) + a 4 ( 7 b 8 + 2 b 4 c 4 + 7 c 8 ) − 2 a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ( 2 b 4 − b 2 c 2 + 2 c 4 ) + ( b 2 − c 2 ) 4 ( b 4 + b 2 c 2 + c 4 )]
X 140
外心と九点円の中心の中点
(中点三角形の九点円の中心)
midpoint of the circumcenter and the nine-point center
(nine-point center of the medial triangle)
f ( a , b , c ) = 2 a 4 − 3 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 f(a,b,c)=2a^4-3a^2(b^2+c^2)+(b^2-c^2)^2 f ( a , b , c ) = 2 a 4 − 3 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
別解
f ( a , b , c ) = 3 ( a + b + c ) ( b + c − a ) ( c + a − b ) ( a + b − c ) − ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=3(a+b+c)(b+c-a)(c+a-b)(a+b-c)-(c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = 3 ( a + b + c ) ( b + c − a ) ( c + a − b ) ( a + b − c ) − ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 141
類似重心の補点
(中点三角形の類似重心)
complement of the symmedian point
(symmedian point of the medial triangle)
f ( a , b , c ) = b 2 + c 2 f(a,b,c)=b^2+c^2 f ( a , b , c ) = b 2 + c 2
X 142
ミッテンプンクトの補点
(ジェルゴンヌ点とミッテンプンクトの中点)
(中点三角形のミッテンプンクト)
complement of the mittenpunkt
(midpoint of the Gergonne point and the mittenpunkt)
(mittenpunkt of the medial triangle)
f ( a , b , c ) = a ( b + c ) − ( b − c ) 2 f(a,b,c)=a(b+c)-(b-c)^2 f ( a , b , c ) = a ( b + c ) − ( b − c ) 2
X 143
垂足三角形の九点円の中心
nine-point center of the orthic triangle
f ( a , b , c ) = a 2 ( a 2 b 2 + a 2 c 2 − b 4 + 2 b 2 c 2 − c 4 ) ( a 4 − 2 a 2 b 2 − 2 a 2 c 2 + b 4 − b 2 c 2 + c 4 ) f(a,b,c)=a^2(a^2b^2+a^2c^2-b^4+2b^2c^2-c^4)(a^4-2a^2b^2-2a^2c^2+b^4-b^2c^2+c^4) f ( a , b , c ) = a 2 ( a 2 b 2 + a 2 c 2 − b 4 + 2 b 2 c 2 − c 4 ) ( a 4 − 2 a 2 b 2 − 2 a 2 c 2 + b 4 − b 2 c 2 + c 4 )
X 144
ジェルゴンヌ点の反補点
(ジェルゴンヌ点のミッテンプンクトに関する鏡映)
anticomplement of the Gergonne point
(reflection of the Gergonne point in the mittenpunkt)
f ( a , b , c ) = 3 a 2 − 2 a ( b + c ) − ( b − c ) 2 f(a,b,c)=3a^2-2a(b+c)-(b-c)^2 f ( a , b , c ) = 3 a 2 − 2 a ( b + c ) − ( b − c ) 2
X 145
ナーゲル点の反補点
(ナーゲル点の内心に関する鏡映)
anticomplement of the Nagel point
(reflection of the Nagel point in the incenter)
f ( a , b , c ) = 3 a − b − c f(a,b,c)=3a-b-c f ( a , b , c ) = 3 a − b − c
X 146
オイラー無限遠点の反補共役点
(ド・ロンシャン点のキーペルト放物線の焦点に関する鏡映)
anticomplementary conjugate of the Euler infinity point
(reflection of de Longchamps point in the focus of the Kiepert parabola)
f ( a , b , c ) = a 10 + a 8 ( b 2 + c 2 ) − a 6 ( 8 b 4 − 9 b 2 c 2 + 8 c 4 ) + 2 a 4 ( b 2 + c 2 ) ( 4 b 4 − 7 b 2 c 2 + 4 c 4 ) − a 2 ( b 2 − c 2 ) 2 ( b 4 + 9 b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 4 ( b 2 + c 2 ) f(a,b,c)=a^{10}+a^8(b^2+c^2)-a^6(8b^4-9b^2c^2+8c^4)+2a^4(b^2+c^2)(4b^4-7b^2c^2+4c^4)-a^2(b^2-c^2)^2(b^4+9b^2c^2+c^4)-(b^2-c^2)^4(b^2+c^2) f ( a , b , c ) = a 10 + a 8 ( b 2 + c 2 ) − a 6 ( 8 b 4 − 9 b 2 c 2 + 8 c 4 ) + 2 a 4 ( b 2 + c 2 ) ( 4 b 4 − 7 b 2 c 2 + 4 c 4 ) − a 2 ( b 2 − c 2 ) 2 ( b 4 + 9 b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 4 ( b 2 + c 2 )
X 147
反中点三角形のタリー点
(ド・ロンシャン点のシュタイナー点に関する鏡映)
Tarry point of the anticomplementary triangle
(reflection of de Longchamps point in the Steiner point)
f ( a , b , c ) = a 8 + a 2 ( b 2 + c 2 ) − a 4 ( 2 b 4 + 3 b 2 c 2 + 2 c 4 ) + a 2 ( b 2 + c 2 ) ( b 4 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + b 2 c 2 + c 4 ) f(a,b,c)=a^8+a^2(b^2+c^2)-a^4(2b^4+3b^2c^2+2c^4)+a^2(b^2+c^2)(b^4+c^4)-(b^2-c^2)^2(b^4+b^2c^2+c^4) f ( a , b , c ) = a 8 + a 2 ( b 2 + c 2 ) − a 4 ( 2 b 4 + 3 b 2 c 2 + 2 c 4 ) + a 2 ( b 2 + c 2 ) ( b 4 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + b 2 c 2 + c 4 )
X 148
反中点三角形のシュタイナー点
(ド・ロンシャン点のタリー点に関する鏡映)
(シュタイナー点の反補点)
Steiner point of the anticomplementary triangle
(reflection of de Longchamps point in the Tarry point)
(anticomplement of the Steiner point)
f ( a , b , c ) = a 4 − a 2 ( b 2 + c 2 ) − b 4 + 3 b 2 c 2 − c 4 f(a,b,c)=a^4-a^2(b^2+c^2)-b^4+3b^2c^2-c^4 f ( a , b , c ) = a 4 − a 2 ( b 2 + c 2 ) − b 4 + 3 b 2 c 2 − c 4
X 149
ド・ロンシャン点のX 104 に関する鏡映
Reflection of de Longchamps point in X 104
f ( a , b , c ) = a 3 − a 2 ( b + c ) + a ( b 2 − b c + c 2 ) − ( b + c ) ( b − c ) 2 f(a,b,c)=a^3-a^2(b+c)+a(b^2-bc+c^2)-(b+c)(b-c)^2 f ( a , b , c ) = a 3 − a 2 ( b + c ) + a ( b 2 − b c + c 2 ) − ( b + c ) ( b − c ) 2
X 150
ド・ロンシャン点のX 103 に関する鏡映
Reflection of de Longchamps point in X 103
f ( a , b , c ) = a 4 − a 3 ( b + c ) + a 2 b c + a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b 2 + b c + c 2 ) f(a,b,c)=a^4-a^3(b+c)+a^2bc+a(b-c)^2(b+c)-(b-c)^2(b^2+bc+c^2) f ( a , b , c ) = a 4 − a 3 ( b + c ) + a 2 b c + a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b 2 + b c + c 2 )
X 154
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 [ 3 a 4 − 2 a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2[3a^4-2a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = a 2 [ 3 a 4 − 2 a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 155
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ − a 6 + 3 a 4 ( b 2 + c 2 ) − a 2 ( 3 b 4 − 2 b 2 c 2 + 3 c 4 ) + ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] f(a,b,c)=a^2(b^2+c^2-a^2)[-a^6+3a^4(b^2+c^2)-a^2(3b^4-2b^2c^2+3c^4)+(b^2-c^2)^2(b^2+c^2)] f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ − a 6 + 3 a 4 ( b 2 + c 2 ) − a 2 ( 3 b 4 − 2 b 2 c 2 + 3 c 4 ) + ( b 2 − c 2 ) 2 ( b 2 + c 2 )]
X 156
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 [ a 8 − 3 a 6 ( b 2 + c 2 ) + a 4 ( 3 b 4 + 2 b 2 c 2 + 3 c 4 ) − a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) + b 2 c 2 ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2[a^8-3a^6(b^2+c^2)+a^4(3b^4+2b^2c^2+3c^4)-a^2(b^2+c^2)(b^4-b^2c^2+c^4)+b^2c^2(b^2-c^2)^2] f ( a , b , c ) = a 2 [ a 8 − 3 a 6 ( b 2 + c 2 ) + a 4 ( 3 b 4 + 2 b 2 c 2 + 3 c 4 ) − a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) + b 2 c 2 ( b 2 − c 2 ) 2 ]
X 157
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 [ a 6 − a 4 ( b 2 + c 2 ) + a 2 ( b 4 + c 4 ) − ( b 2 − c 2 ) 2 ( c 2 + b 2 ) ] f(a,b,c)=a^2[a^6-a^4(b^2+c^2)+a^2(b^4+c^4)-(b^2-c^2)^2(c^2+b^2)] f ( a , b , c ) = a 2 [ a 6 − a 4 ( b 2 + c 2 ) + a 2 ( b 4 + c 4 ) − ( b 2 − c 2 ) 2 ( c 2 + b 2 )]
X 158
X 92 のクローソン点交叉共役点
Clawson-point-cross conjugate of X 92
f ( a , b , c ) = b c ( c 2 + a 2 − b 2 ) 2 ( a 2 + b 2 − c 2 ) 2 f(a,b,c)=bc(c^2+a^2-b^2)^2(a^2+b^2-c^2)^2 f ( a , b , c ) = b c ( c 2 + a 2 − b 2 ) 2 ( a 2 + b 2 − c 2 ) 2
X 159
接線三角形のミッテンプンクト
Mittenpunkt of the tangential triangle
f ( a , b , c ) = a 2 [ a 6 + a 4 ( b 2 + c 2 ) − a 2 ( b 2 + c 2 ) 2 − ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] f(a,b,c)=a^2[a^6+a^4(b^2+c^2)-a^2(b^2+c^2)^2-(b^2-c^2)^2(b^2+c^2)] f ( a , b , c ) = a 2 [ a 6 + a 4 ( b 2 + c 2 ) − a 2 ( b 2 + c 2 ) 2 − ( b 2 − c 2 ) 2 ( b 2 + c 2 )]
別表現
f ( a , b , c ) = a 2 [ ( b 2 + c 2 ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) − a 2 ( a 2 + b 2 + c 2 ) ( b 2 + c 2 − a 2 ) ] f(a,b,c)=a^2[(b^2+c^2)(c^2+a^2-b^2)(a^2+b^2-c^2)-a^2(a^2+b^2+c^2)(b^2+c^2-a^2)] f ( a , b , c ) = a 2 [( b 2 + c 2 ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) − a 2 ( a 2 + b 2 + c 2 ) ( b 2 + c 2 − a 2 )]
X 160
接線三角形のX 37
X 37 of the tangential triangle
f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) − b 4 − b 2 c 2 − c 4 ] f(a,b,c)=a^2[a^2(b^2+c^2)-b^4-b^2c^2-c^4] f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) − b 4 − b 2 c 2 − c 4 ]
別表現
f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) ( b 2 + c 2 − a 2 ) + b 2 ( c 2 − a 2 ) ( c 2 + a 2 − b 2 ) + c 2 ( b 2 − a 2 ) ( a 2 + b 2 − c 2 ) ] f(a,b,c)=a^2[a^2(b^2+c^2)(b^2+c^2-a^2)+b^2(c^2-a^2)(c^2+a^2-b^2)+c^2(b^2-a^2)(a^2+b^2-c^2)] f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 ) ( b 2 + c 2 − a 2 ) + b 2 ( c 2 − a 2 ) ( c 2 + a 2 − b 2 ) + c 2 ( b 2 − a 2 ) ( a 2 + b 2 − c 2 )]
X 161
接線三角形のX 63
X 63 of the tangential triangle
f ( a , b , c ) = a 2 [ a 10 − a 8 ( b 2 + c 2 ) − 2 a 6 ( b 4 + b 2 c 2 + c 4 ) + 2 a 4 ( b 2 + c 2 ) ( b 4 + c 4 ) + a 2 ( b 2 − c 2 ) 2 ( b 4 + c 4 ) − ( b 2 − c 2 ) 4 ( b 2 + c 2 ) ] f(a,b,c)=a^2[a^{10}-a^8(b^2+c^2)-2a^6(b^4+b^2c^2+c^4)+2a^4(b^2+c^2)(b^4+c^4)+a^2(b^2-c^2)^2(b^4+c^4)-(b^2-c^2)^4(b^2+c^2)] f ( a , b , c ) = a 2 [ a 10 − a 8 ( b 2 + c 2 ) − 2 a 6 ( b 4 + b 2 c 2 + c 4 ) + 2 a 4 ( b 2 + c 2 ) ( b 4 + c 4 ) + a 2 ( b 2 − c 2 ) 2 ( b 4 + c 4 ) − ( b 2 − c 2 ) 4 ( b 2 + c 2 )]
別表現
f ( a , b , c ) = a 2 [ a 4 ( a 2 + b 2 + c 2 ) ( b 2 + c 2 − a 2 ) 2 − b 4 ( c 2 + a 2 − b 2 ) 2 ( a 2 + b 2 − c 2 ) − c 4 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) 2 ] f(a,b,c)=a^2[a^4(a^2+b^2+c^2)(b^2+c^2-a^2)^2-b^4(c^2+a^2-b^2)^2(a^2+b^2-c^2)-c^4(c^2+a^2-b^2)(a^2+b^2-c^2)^2] f ( a , b , c ) = a 2 [ a 4 ( a 2 + b 2 + c 2 ) ( b 2 + c 2 − a 2 ) 2 − b 4 ( c 2 + a 2 − b 2 ) 2 ( a 2 + b 2 − c 2 ) − c 4 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) 2 ]
X 162
X 108 とX 109 のチェバ点
Cevapoint of X 108 and X 109
f ( a , b , c ) = a ( a 2 − b 2 ) ( a 2 − c 2 ) ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a(a^2-b^2)(a^2-c^2)(a^2-b^2+c^2)(a^2+b^2-c^2) f ( a , b , c ) = a ( a 2 − b 2 ) ( a 2 − c 2 ) ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 )
X 163
(名称検討中)
(name pending)
f ( a , b , c ) = a 3 ( a − b ) ( a − c ) ( a + b ) ( a + c ) f(a,b,c)=a^3(a-b)(a-c)(a+b)(a+c) f ( a , b , c ) = a 3 ( a − b ) ( a − c ) ( a + b ) ( a + c )
X 164
傍心三角形の内心
incenter of the excentral triangle
f ( a , b , c ) = a ( b ( a + b + c ) ( a + b − c ) ( b + c − a ) + c ( a + b + c ) ( b + c − a ) ( c + a − b ) − a ( a + b + c ) ( c + a − b ) ( a + b − c ) ) f(a,b,c)=a\bigl(\sqrt{b(a+b+c)(a+b-c)(b+c-a)}+\sqrt{c(a+b+c)(b+c-a)(c+a-b)}-\sqrt{a(a+b+c)(c+a-b)(a+b-c)}\bigr) f ( a , b , c ) = a ( b ( a + b + c ) ( a + b − c ) ( b + c − a ) + c ( a + b + c ) ( b + c − a ) ( c + a − b ) − a ( a + b + c ) ( c + a − b ) ( a + b − c ) )
別解1
f ( a , b , c ) = a ( b c + a − b + c a + b − c − a b + c − a ) f(a,b,c)=a\Biggl(\sqrt{\dfrac{b}{c+a-b}}+\sqrt{\dfrac{c}{a+b-c}}-\sqrt{\dfrac{a}{b+c-a}}\Biggr) f ( a , b , c ) = a ( c + a − b b + a + b − c c − b + c − a a )
別解2
f ( a , b , c ) = a ( ( b + c − a ) ( a + b − c ) 4 a c + ( b + c − a ) ( c + a − b ) 4 a b − ( c + a − b ) ( a + b − c ) 4 b c ) f(a,b,c)=a\Biggl(\sqrt{\dfrac{(b+c-a)(a+b-c)}{4ac}}+\sqrt{\dfrac{(b+c-a)(c+a-b)}{4ab}}-\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}}\Biggr) f ( a , b , c ) = a ( 4 a c ( b + c − a ) ( a + b − c ) + 4 ab ( b + c − a ) ( c + a − b ) − 4 b c ( c + a − b ) ( a + b − c ) )
X 165
傍心三角形の重心
centroid of the excentral triangle
f ( a , b , c ) = a ( 3 a 2 − 2 a ( b + c ) − ( b − c ) 2 ) f(a,b,c)=a(3a^2-2a(b+c)-(b-c)^2) f ( a , b , c ) = a ( 3 a 2 − 2 a ( b + c ) − ( b − c ) 2 )
X 166
傍心三角形のジェルゴンヌ点
Gergonne point of the excentral triangle
f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) ) f(a,b,c)=a(g(b,c,a)+g(c,a,b)-g(a,b,c)) f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ))
ただし、
g ( a , b , c ) = 1 ( b + c − a ) ( b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ) g(a,b,c)=\dfrac1{(b+c-a)\left(\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)}\right)} g ( a , b , c ) = ( b + c − a ) ( b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ) 1
f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) ) f(a,b,c)=a(g(b,c,a)+g(c,a,b)-g(a,b,c)) f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ))
ただし、
g ( a , b , c ) = 1 / [ ( b + c − a ) ( b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ) ] g(a,b,c)=1/[(b+c-a)\allowbreak(\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)})] g ( a , b , c ) = 1/ [( b + c − a ) ( b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) )]
X 167
傍心三角形のナーゲル点
Nagel point of the excentral triangle
f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) ) f(a,b,c)=a(g(b,c,a)+g(c,a,b)-g(a,b,c)) f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ))
ただし、
g ( a , b , c ) = b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) b + c − a g(a,b,c)=\dfrac{\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)}}{b+c-a} g ( a , b , c ) = b + c − a b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a )
f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) ) f(a,b,c)=a(g(b,c,a)+g(c,a,b)-g(a,b,c)) f ( a , b , c ) = a ( g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ))
ただし、
g ( a , b , c ) = [ b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ] / ( b + c − a ) g(a,b,c)=[\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)}]/(b+c-a) g ( a , b , c ) = [ b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ] / ( b + c − a )
X 169
(名称検討中)
(name pending)
f ( a , b , c ) = a 3 − a 2 ( b + c ) + a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c ) f(a,b,c)=a^3-a^2(b+c)+a(b^2+c^2)-(b-c)^2(b+c) f ( a , b , c ) = a 3 − a 2 ( b + c ) + a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c )
X 171
第一シャリギン点の等角共役点
isogonal conjugate of the first Sharygin point
f ( a , b , c ) = a ( a 2 + b c ) f(a,b,c)=a(a^2+bc) f ( a , b , c ) = a ( a 2 + b c )
X 172
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( a 2 + b c ) f(a,b,c)=a^2(a^2+bc) f ( a , b , c ) = a 2 ( a 2 + b c )
X 173
合同二等辺化線点
congruent isoscelizers point
f ( a , b , c ) = a ( b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ) f(a,b,c)=a\left(\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)}\right) f ( a , b , c ) = a ( b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) )
f ( a , b , c ) = a [ b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ] f(a,b,c)=a[\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)}] f ( a , b , c ) = a [ b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) ]
別解1
f ( a , b , c ) = a ( 2 b c ( c + a − b ) ( a + b − c ) + ( c + a − b ) ( a + b − c ) ) f(a,b,c)=a\left(2\sqrt{bc(c+a-b)(a+b-c)}+(c+a-b)(a+b-c)\right) f ( a , b , c ) = a ( 2 b c ( c + a − b ) ( a + b − c ) + ( c + a − b ) ( a + b − c ) )
別解1
f ( a , b , c ) = a [ 2 b c ( c + a − b ) ( a + b − c ) + ( c + a − b ) ( a + b − c ) ] f(a,b,c)=a[2\sqrt{bc(c+a-b)(a+b-c)}+(c+a-b)(a+b-c)] f ( a , b , c ) = a [ 2 b c ( c + a − b ) ( a + b − c ) + ( c + a − b ) ( a + b − c )]
別解2
f ( a , b , c ) = g ( a , b , c ) ( 1 + g ( a , b , c ) ) f(a,b,c)=g(a,b,c)(1+g(a,b,c)) f ( a , b , c ) = g ( a , b , c ) ( 1 + g ( a , b , c ))
ただし、
g ( a , b , c ) = ( c + a − b ) ( a + b − c ) 4 b c g(a,b,c)=\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}} g ( a , b , c ) = 4 b c ( c + a − b ) ( a + b − c )
別解3
f ( a , b , c ) = a 2 g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) f(a,b,c)=\dfrac{a}{2g(a,b,c)g(b,c,a)g(c,a,b)+g(b,c,a)+g(c,a,b)-g(a,b,c)} f ( a , b , c ) = 2 g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) a
ただし、
g ( a , b , c ) = a b + c − a g(a,b,c)=\sqrt{\dfrac{a}{b+c-a}} g ( a , b , c ) = b + c − a a
別解3
f ( a , b , c ) = a / ( 2 g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) ) f(a,b,c)=a/(2g(a,b,c)g(b,c,a)g(c,a,b)+g(b,c,a)+g(c,a,b)-g(a,b,c)) f ( a , b , c ) = a / ( 2 g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ))
ただし、
g ( a , b , c ) = a b + c − a g(a,b,c)=\sqrt{\dfrac{a}{b+c-a}} g ( a , b , c ) = b + c − a a
X 174
イフ合同心
Yff center of congruence
f ( a , b , c ) = a b + c − a f(a,b,c)=\sqrt{\dfrac{a}{b+c-a}} f ( a , b , c ) = b + c − a a
別解
f ( a , b , c ) = ( c + a − b ) ( a + b − c ) 4 b c f(a,b,c)=\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}} f ( a , b , c ) = 4 b c ( c + a − b ) ( a + b − c )
X 175
等周点
isoperimetric point
f ( a , b , c ) = 2 a − ( a + b + c ) ( c + a − b ) ( a + b − c ) b + c − a f(a,b,c)=2a-\sqrt{\dfrac{(a+b+c)(c+a-b)(a+b-c)}{b+c-a}} f ( a , b , c ) = 2 a − b + c − a ( a + b + c ) ( c + a − b ) ( a + b − c )
別解
f ( a , b , c ) = ( c + a − b ) ( a + b − c ) ( a ( b + c − a ) − 2 Δ ) f(a,b,c)=(c+a-b)(a+b-c)\left(a(b+c-a)-2\Delta\right) f ( a , b , c ) = ( c + a − b ) ( a + b − c ) ( a ( b + c − a ) − 2Δ )
X 176
等迂回点
equal detour point
f ( a , b , c ) = 2 a − ( a + b + c ) ( c + a − b ) ( a + b − c ) b + c − a f(a,b,c)=2a-\sqrt{\dfrac{(a+b+c)(c+a-b)(a+b-c)}{b+c-a}} f ( a , b , c ) = 2 a − b + c − a ( a + b + c ) ( c + a − b ) ( a + b − c )
別解
f ( a , b , c ) = ( c + a − b ) ( a + b − c ) ( a ( b + c − a ) − 2 Δ ) f(a,b,c)=(c+a-b)(a+b-c)\left(a(b+c-a)-2\Delta\right) f ( a , b , c ) = ( c + a − b ) ( a + b − c ) ( a ( b + c − a ) − 2Δ )
X 177
第一円弧中点点
first mid-arc point
f ( a , b , c ) = a b + c − a ( b ( c + a − b ) + c ( a + b − c ) ) f(a,b,c)=\sqrt{\dfrac{a}{b+c-a}}(\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}) f ( a , b , c ) = b + c − a a ( b ( c + a − b ) + c ( a + b − c ) )
別解
f ( a , b , c ) = g ( b , c , a ) + g ( c , a , b ) g ( a , b , c ) f(a,b,c)=\dfrac{g(b,c,a)+g(c,a,b)}{g(a,b,c)} f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) + g ( c , a , b )
ただし、
g ( a , b , c ) = ( c + a − b ) ( a + b − c ) 4 b c g(a,b,c)=\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}} g ( a , b , c ) = 4 b c ( c + a − b ) ( a + b − c )
X 178
第二円弧中点点
second mid-arc point
f ( a , b , c ) = b ( c + a − b ) + c ( a + b − c ) f(a,b,c)=\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)} f ( a , b , c ) = b ( c + a − b ) + c ( a + b − c )
別解
f ( a , b , c ) = ( a + b + c ) ( c + a − b ) 4 c a + ( ( a + b + c ) ( a + b − c ) 4 a b f(a,b,c)=\sqrt{\dfrac{(a+b+c)(c+a-b)}{4ca}}+\sqrt{\dfrac{((a+b+c)(a+b-c)}{4ab}} f ( a , b , c ) = 4 c a ( a + b + c ) ( c + a − b ) + 4 ab (( a + b + c ) ( a + b − c )
X 179
第一安島マルファッティ点
first Ajima-Malfatti point
f ( a , b , c ) = 1 ( 2 b c + ( a + b + c ) ( b + c − a ) ) 2 f(a,b,c)=\dfrac{1}{\left(2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)}\right)^2} f ( a , b , c ) = ( 2 b c + ( a + b + c ) ( b + c − a ) ) 2 1
別表現
f ( a , b , c ) = 1 b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\dfrac{1}{b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}} f ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) 1
別解1
f ( a , b , c ) = ( b + c − a ) 2 ( 2 b c − ( a + b + c ) ( b + c − a ) ) 2 f(a,b,c)=(b+c-a)^2\left(2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)}\right)^2 f ( a , b , c ) = ( b + c − a ) 2 ( 2 b c − ( a + b + c ) ( b + c − a ) ) 2
別解1の別表現
f ( a , b , c ) = ( b + c − a ) 2 [ b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ] f(a,b,c)=(b+c-a)^2[b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}] f ( a , b , c ) = ( b + c − a ) 2 [ b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ]
別解2
f ( a , b , c ) = a ( 1 + ( a + b + c ) ( b + c − a ) 4 b c ) 2 f(a,b,c)=\dfrac{a}{\left(1+\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}\right)^2} f ( a , b , c ) = ( 1 + 4 b c ( a + b + c ) ( b + c − a ) ) 2 a
X 181
アポロニウス点
Apollonius point
f ( a , b , c ) = a 2 ( b + c ) 2 b + c − a f(a,b,c)=\dfrac{a^2(b+c)^2}{b+c-a} f ( a , b , c ) = b + c − a a 2 ( b + c ) 2
別解
f ( a , b , c ) = a 2 ( b + c ) 2 ( c + a − b ) ( a + b − c ) f(a,b,c)=a^2(b+c)^2(c+a-b)(a+b-c) f ( a , b , c ) = a 2 ( b + c ) 2 ( c + a − b ) ( a + b − c )
X 182
ブロカール直径の中点
(ブロカール円の中心)
(外心と類似重心の中点)
midpoint of the Brocard diameter
(center of the Brocard circle)
(midpoint of the circumcenter and the symmedian point)
f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 − a 2 ) + 2 b 2 c 2 ] f(a,b,c)=a^2[a^2(b^2+c^2-a^2)+2b^2c^2] f ( a , b , c ) = a 2 [ a 2 ( b 2 + c 2 − a 2 ) + 2 b 2 c 2 ]
X 183
外接円中点三角形の類似重心
symmedian point of the circummedial triangle
f ( a , b , c ) = a 4 − a 2 ( b 2 + c 2 ) − 2 b 2 c 2 f(a,b,c)=a^4-a^2(b^2+c^2)-2b^2c^2 f ( a , b , c ) = a 4 − a 2 ( b 2 + c 2 ) − 2 b 2 c 2
X 184
X 125 のブロカール円についての反転
(外心と類似重心の交叉点)
inverse of X 125 in the Brocard circle
(crosspoint of the circumcenter and the symmedian point)
f ( a , b , c ) = a 4 ( b 2 + c 2 − a 2 ) f(a,b,c)=a^4(b^2+c^2-a^2) f ( a , b , c ) = a 4 ( b 2 + c 2 − a 2 )
X 185
垂足三角形のナーゲル点
Nagel point of the orthic triangle
f ( a , b , c ) = a 2 [ a 4 ( b 2 + c 2 ) − 2 a 2 ( b 2 − c 2 ) 2 + ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ] f(a,b,c)=a^2[a^4(b^2+c^2)-2a^2(b^2-c^2)^2+(b^2-c^2)^2(b^2+c^2)] f ( a , b , c ) = a 2 [ a 4 ( b 2 + c 2 ) − 2 a 2 ( b 2 − c 2 ) 2 + ( b 2 − c 2 ) 2 ( b 2 + c 2 )]
X 186
垂心の外接円に関する反転
inverse of the orthocenter in the circumcircle
f ( a , b , c ) = a 2 [ ( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=a^2[(b^2+c^2-a^2)^2-b^2c^2](c^2+a^2-b^2)(a^2+b^2-c^2) f ( a , b , c ) = a 2 [( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
X 187
シャウテ心
(類似重心の外接円に関する反転)
(第一等力点と第二等力点の中点)
Schoute center
(inverse in the circumcircle of the symmedian point)
(midpoint of the first isodynamic point and the second isodynamic point)
f ( a , b , c ) = a 2 ( 2 a 2 − b 2 − c 2 ) f(a,b,c)=a^2(2a^2-b^2-c^2) f ( a , b , c ) = a 2 ( 2 a 2 − b 2 − c 2 )
X 188
反中点三角形の第二円弧中点点
(元の三角形とイフ合同心の外向三角形との配景の中心)
second mid-arc point of the anticomplementary triangle
(perspector of the reference triangle of the Yff center of congruence)
f ( a , b , c ) = a ( b + c − a ) f(a,b,c)=\sqrt{a(b+c-a)} f ( a , b , c ) = a ( b + c − a )
別解
f ( a , b , c ) = ( a + b + c ) ( b + c − a ) 4 b c f(a,b,c)=\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}} f ( a , b , c ) = 4 b c ( a + b + c ) ( b + c − a )
X 189
ナーゲル点の円チェバ共役点
cyclocevian conjugate of the Nagel point
f ( a , b , c ) = [ a 3 + a 2 ( b − c ) − a ( b − c ) 2 − ( b − c ) ( b + c ) 2 ] [ a 3 − a 2 ( b − c ) − a ( b − c ) 2 + ( b − c ) ( b + c ) 2 ] f(a,b,c)=[a^3+a^2(b-c)-a(b-c)^2-(b-c)(b+c)^2][a^3-a^2(b-c)-a(b-c)^2+(b-c)(b+c)^2] f ( a , b , c ) = [ a 3 + a 2 ( b − c ) − a ( b − c ) 2 − ( b − c ) ( b + c ) 2 ] [ a 3 − a 2 ( b − c ) − a ( b − c ) 2 + ( b − c ) ( b + c ) 2 ]
X 190
イフ放物点
Yff parabolic point
f ( a , b , c ) = ( a − b ) ( a − c ) f(a,b,c)=(a-b)(a-c) f ( a , b , c ) = ( a − b ) ( a − c )
X 191
内心のシュピーカー心チェバ共役点
Spieker-center-Ceva conjugate of the incenter
f ( a , b , c ) = a ( − a 3 − a 2 ( b + c ) + a ( b 2 + b c + c 2 ) + ( b + c ) ( b 2 + c 2 ) ) f(a,b,c)=a(-a^3-a^2(b+c)+a(b^2+bc+c^2)+(b+c)(b^2+c^2)) f ( a , b , c ) = a ( − a 3 − a 2 ( b + c ) + a ( b 2 + b c + c 2 ) + ( b + c ) ( b 2 + c 2 ))
X 192
合同辺平行線点
(重心の内心チェバ共役点)
congruent parallelians point
(incenter-Ceva conjugate of centroid)
f ( a , b , c ) = a ( b + c ) − b c f(a,b,c)=a(b+c)-bc f ( a , b , c ) = a ( b + c ) − b c
X 193
重心の垂心チェバ共役点
orthocenter-Ceva conjugate of the centroid
f ( a , b , c ) = 3 a 2 − b 2 − c 2 f(a,b,c)=3a^2-b^2-c^2 f ( a , b , c ) = 3 a 2 − b 2 − c 2
X 194
重心の類似重心チェバ共役点
symmedian-point--Ceva conjugate of the centroid
f ( a , b , c ) = a 2 ( b 2 + c 2 ) − b 2 c 2 f(a,b,c)=a^2(b^2+c^2)-b^2c^2 f ( a , b , c ) = a 2 ( b 2 + c 2 ) − b 2 c 2
X 195
外心の九点心チェバ共役点
nine-point-center--Ceva conjugate of the circumcenter
f ( a , b , c ) = a 2 [ a 8 − 4 a 6 ( b 2 + c 2 ) + a 4 ( 6 b 4 + 5 b 2 c 2 + 6 c 4 ) − a 2 ( 4 b 6 − b 4 c 2 − b 2 c 4 + 4 c 6 ) + b 8 − 2 b 6 c 2 + 2 b 4 c 4 − 2 b 2 c 6 + c 8 ] f(a,b,c)=a^2[a^8-4a^6(b^2+c^2)+a^4(6b^4+5b^2c^2+6c^4)-a^2(4b^6-b^4c^2-b^2c^4+4c^6)+b^8-2b^6c^2+2b^4c^4-2b^2c^6+c^8] f ( a , b , c ) = a 2 [ a 8 − 4 a 6 ( b 2 + c 2 ) + a 4 ( 6 b 4 + 5 b 2 c 2 + 6 c 4 ) − a 2 ( 4 b 6 − b 4 c 2 − b 2 c 4 + 4 c 6 ) + b 8 − 2 b 6 c 2 + 2 b 4 c 4 − 2 b 2 c 6 + c 8 ]
X 200
ミッテンプンクトのナーゲル点チェバ共役点
Nagel-point-Ceva conjugate of the mittenpunkt
f ( a , b , c ) = a ( b + c − a ) 2 f(a,b,c)=a(b+c-a)^2 f ( a , b , c ) = a ( b + c − a ) 2
X 201
X 12 のシュピーカー心チェバ共役点
Spieker-center-Ceva conjugate of X 12
f ( a , b , c ) = a ( b + c ) 2 ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a(b+c)^2(c+a-b)(a+b-c)(b^2+c^2-a^2) f ( a , b , c ) = a ( b + c ) 2 ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 )
X 202
第一等力点の内心チェバ共役点
incenter-Ceva conjugate of the first isodynamic point
f ( a , b , c ) = a 2 [ 4 b c − ( b 2 + c 2 − a 2 ) + 4 3 Δ ] f(a,b,c)=a^2[4bc-(b^2+c^2-a^2)+4\sqrt{3}\Delta] f ( a , b , c ) = a 2 [ 4 b c − ( b 2 + c 2 − a 2 ) + 4 3 Δ ]
X 203
第二等力点の内心チェバ共役点
incenter-Ceva conjugate of the second isodynamic point
f ( a , b , c ) = a 2 [ 4 b c − ( b 2 + c 2 − a 2 ) − 4 3 Δ ] f(a,b,c)=a^2[4bc-(b^2+c^2-a^2)-4\sqrt{3}\Delta] f ( a , b , c ) = a 2 [ 4 b c − ( b 2 + c 2 − a 2 ) − 4 3 Δ ]
X 204
クローソン点の内心チェバ共役点
incenter-Ceva conjugate of the Clawson point
f ( a , b , c ) = a ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) [ a 4 + 2 ( b 2 − c 2 ) − ( b 2 − c 2 ) ( 3 b 2 + c 2 ) ] [ a 4 − 2 ( b 2 − c 2 ) − ( b 2 − c 2 ) ( b 2 + 3 c 2 ) ] f(a,b,c)=a(a^2-b^2+c^2)(a^2+b^2-c^2)[a^4+2(b^2-c^2)-(b^2-c^2)(3b^2+c^2)][a^4-2(b^2-c^2)-(b^2-c^2)(b^2+3c^2)] f ( a , b , c ) = a ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) [ a 4 + 2 ( b 2 − c 2 ) − ( b 2 − c 2 ) ( 3 b 2 + c 2 )] [ a 4 − 2 ( b 2 − c 2 ) − ( b 2 − c 2 ) ( b 2 + 3 c 2 )]
X 210
ナーゲル点とミッテンプンクトの交叉点
crosspoint of the Nagel point and the Mittenpunkt
f ( a , b , c ) = a ( b + c ) ( b + c − a ) f(a,b,c)=a(b+c)(b+c-a) f ( a , b , c ) = a ( b + c ) ( b + c − a )
X 212
X 41 のミッテンプンクト・チェバ共役点
(X 48 の外心チェバ共役点)
Mittenpunkt-Ceva conjugate of X 41
(circumcenter-Ceva conjugate of X 48 )
f ( a , b , c ) = a 3 ( b + c − a ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a^3(b+c-a)(b^2+c^2-a^2) f ( a , b , c ) = a 3 ( b + c − a ) ( b 2 + c 2 − a 2 )
X 213
X 42 の類似重心チェバ共役点
symmedian-point-Ceva conjugate of X 42
f ( a , b , c ) = a 3 ( b + c ) f(a,b,c)=a^3(b+c) f ( a , b , c ) = a 3 ( b + c )
X 215
X 50 の内心チェバ共役点
incenter-Ceva conjugate of X 50
f ( a , b , c ) = a 4 ( b + c − a ) ( b 2 + c 2 − a 2 − b c ) 2 f(a,b,c)=a^4(b+c-a)(b^2+c^2-a^2-bc)^2 f ( a , b , c ) = a 4 ( b + c − a ) ( b 2 + c 2 − a 2 − b c ) 2
X 216
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2(b^2+c^2-a^2)[a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 218
X 55 のジェルゴンヌ点チェバ共役点
Gergonne-point-Ceva conjugate of X 55
f ( a , b , c ) = a 2 ( a 2 + b 2 + c 2 − 2 a b − 2 a c ) f(a,b,c)=a^2(a^2+b^2+c^2-2ab-2ac) f ( a , b , c ) = a 2 ( a 2 + b 2 + c 2 − 2 ab − 2 a c )
X 219
X 55 のナーゲル点チェバ共役点
Nagel-point-Ceva conjugate of X 55
f ( a , b , c ) = a 2 ( b + c − a ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a^2(b+c-a)(b^2+c^2-a^2) f ( a , b , c ) = a 2 ( b + c − a ) ( b 2 + c 2 − a 2 )
X 220
X 55 のミッテンプンクト・チェバ共役点
mittenpunkt-Ceva conjugate of X 55
f ( a , b , c ) = a 2 ( b + c − a ) 2 f(a,b,c)=a^2(b+c-a)^2 f ( a , b , c ) = a 2 ( b + c − a ) 2
X 221
X 56 の内心チェバ共役点
incenter-Ceva conjugate of X 56
f ( a , b , c ) = a 2 [ a ( b 2 + c 2 − a 2 ) − b ( c 2 + a 2 − b 2 ) − c ( a 2 + b 2 − c 2 ) + 2 a b c ] b + c − a f(a,b,c)=\dfrac{a^2[a(b^2+c^2-a^2)-b(c^2+a^2-b^2)-c(a^2+b^2-c^2)+2abc]}{b+c-a} f ( a , b , c ) = b + c − a a 2 [ a ( b 2 + c 2 − a 2 ) − b ( c 2 + a 2 − b 2 ) − c ( a 2 + b 2 − c 2 ) + 2 ab c ]
f ( a , b , c ) = a 2 [ a ( b 2 + c 2 − a 2 ) − b ( c 2 + a 2 − b 2 ) − c ( a 2 + b 2 − c 2 ) + 2 a b c ] / ( b + c − a ) f(a,b,c)=a^2[a(b^2+c^2-a^2)-b(c^2+a^2-b^2)-c(a^2+b^2-c^2)+2abc]/(b+c-a) f ( a , b , c ) = a 2 [ a ( b 2 + c 2 − a 2 ) − b ( c 2 + a 2 − b 2 ) − c ( a 2 + b 2 − c 2 ) + 2 ab c ] / ( b + c − a )
別表現
f ( a , b , c ) = 4 a b c − a 2 ( a + b + c ) ( c + a − b ) ( a + b − c ) b + c − a f(a,b,c)=\dfrac{4abc-a^2(a+b+c)(c+a-b)(a+b-c)}{b+c-a} f ( a , b , c ) = b + c − a 4 ab c − a 2 ( a + b + c ) ( c + a − b ) ( a + b − c )
別表現
f ( a , b , c ) = [ 4 a b c − a 2 ( a + b + c ) ( c + a − b ) ( a + b − c ) ] / ( b + c − a ) f(a,b,c)=[4abc-a^2(a+b+c)(c+a-b)(a+b-c)]/(b+c-a) f ( a , b , c ) = [ 4 ab c − a 2 ( a + b + c ) ( c + a − b ) ( a + b − c )] / ( b + c − a )
別解
f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) [ a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( a + b ) ( a − b ) 2 ] f(a,b,c)=a^2(c+a-b)(a+b-c)\allowbreak[a^3+a^2(b+c)-a(b+c)^2-(a+b)(a-b)^2] f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) [ a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( a + b ) ( a − b ) 2 ]
X 222
X 56 のジェルゴンヌ点チェバ共役点
Gergonne-point-Ceva conjugate of X 56
f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=a^2(c+a-b)(a+b-c)(b^2+c^2-a^2) f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) b + c − a f(a,b,c)=\dfrac{a^2(b^2+c^2-a^2)}{b+c-a} f ( a , b , c ) = b + c − a a 2 ( b 2 + c 2 − a 2 )
X 236
X 188 の重心チェバ共役点
centroid-Ceva conjugate of X 188
f ( a , b , c ) = 1 + ( c + a − b ) ( a + b − c ) 4 b c f(a,b,c)=1+\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}} f ( a , b , c ) = 1 + 4 b c ( c + a − b ) ( a + b − c )
X 238
第二シャリギン点の等角共役点
(元の三角形とX 171 の外向三角形との配景の中心)
isogonal conjugate of the second Sharygin point
(perspector of the reference triangle and the extraversion triangle of X 171 )
f ( a , b , c ) = a ( a 2 − b c ) f(a,b,c)=a(a^2-bc) f ( a , b , c ) = a ( a 2 − b c )
X 253
ド・ロンシャン点の等距離共役点
isogonal conjugate of the de Longchamps point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b 2 + c 2 − a 2 ) ( c 2 + a 2 − b 2 ) + ( a 2 + b 2 − c 2 ) ( b 2 + c 2 − a 2 ) − ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) g(a,b,c)=(b^2+c^2-a^2)(c^2+a^2-b^2)+(a^2+b^2-c^2)(b^2+c^2-a^2)-(c^2+a^2-b^2)(a^2+b^2-c^2) g ( a , b , c ) = ( b 2 + c 2 − a 2 ) ( c 2 + a 2 − b 2 ) + ( a 2 + b 2 − c 2 ) ( b 2 + c 2 − a 2 ) − ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別表現1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 g(a,b,c)=-3a^4+2a^2(b^2+c^2)+(b^2-c^2)^2 g ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
別表現2
f ( a , b , c ) = [ a 4 + 2 a 2 ( b 2 − c 2 ) − ( 3 b 2 + c 2 ) ( b 2 − c 2 ) ] [ a 4 − 2 a 2 ( b 2 − c 2 ) + ( b 2 + 3 c 2 ) ( b 2 − c 2 ) ] f(a,b,c)=[a^4+2a^2(b^2-c^2)-(3b^2+c^2)(b^2-c^2)][a^4-2a^2(b^2-c^2)+(b^2+3c^2)(b^2-c^2)] f ( a , b , c ) = [ a 4 + 2 a 2 ( b 2 − c 2 ) − ( 3 b 2 + c 2 ) ( b 2 − c 2 )] [ a 4 − 2 a 2 ( b 2 − c 2 ) + ( b 2 + 3 c 2 ) ( b 2 − c 2 )]
X 255
X 188 の等角共役点
isogonal conjugate of X 188
f ( a , b , c ) = a 3 ( b 2 + c 2 − a 2 ) f(a,b,c)=a^3(b^2+c^2-a^2) f ( a , b , c ) = a 3 ( b 2 + c 2 − a 2 )
X 256
第一シャリギン点
first Sharygin point
f ( a , b , c ) = a ( a b + c 2 ) ( a c + b 2 ) f(a,b,c)=a(ab+c^2)(ac+b^2) f ( a , b , c ) = a ( ab + c 2 ) ( a c + b 2 )
別解
f ( a , b , c ) = a a 2 + b c f(a,b,c)=\dfrac{a}{a^2+bc} f ( a , b , c ) = a 2 + b c a
X 258
合同内接円二等辺化線点
(合同二等辺化線点の等角共役点)
congruent incircles isoscelizer point
(isogonal conjugate of the congruent isoscelizers point)
f ( a , b , c ) = a b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) f(a,b,c)=\dfrac{a}{\sqrt{b(c+a-b)}+\sqrt{c(a+b-c)}-\sqrt{a(b+c-a)}} f ( a , b , c ) = b ( c + a − b ) + c ( a + b − c ) − a ( b + c − a ) a
別解1
f ( a , b , c ) = a ( 2 b c ( c + a − b ) ( a + b − c ) − ( c + a − b ) ( a + b − c ) ) f(a,b,c)=a(2\sqrt{bc(c+a-b)(a+b-c)}-(c+a-b)(a+b-c)) f ( a , b , c ) = a ( 2 b c ( c + a − b ) ( a + b − c ) − ( c + a − b ) ( a + b − c ))
別解2
f ( a , b , c ) = g ( a , b , c ) ( 1 − g ( a , b , c ) ) f(a,b,c)=g(a,b,c)(1-g(a,b,c)) f ( a , b , c ) = g ( a , b , c ) ( 1 − g ( a , b , c ))
ただし、
g ( a , b , c ) = ( c + a − b ) ( a + b − c ) 4 b c g(a,b,c)=\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}} g ( a , b , c ) = 4 b c ( c + a − b ) ( a + b − c )
別解3
f ( a , b , c ) = a ( 2 g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ) ) f(a,b,c)=a(2g(a,b,c)g(b,c,a)g(c,a,b)+g(b,c,a)+g(c,a,b)-g(a,b,c)) f ( a , b , c ) = a ( 2 g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + g ( b , c , a ) + g ( c , a , b ) − g ( a , b , c ))
ただし、
g ( a , b , c ) = a b + c − a g(a,b,c)=\sqrt{\dfrac{a}{b+c-a}} g ( a , b , c ) = b + c − a a
X 261
X 12 の等距離共役点
isotomic conjugate of X 12
f ( a , b , c ) = b + c − a ( b + c ) 2 f(a,b,c)=\dfrac{b+c-a}{(b+c)^2} f ( a , b , c ) = ( b + c ) 2 b + c − a
別解
f ( a , b , c ) = ( b + c − a ) ( c + a ) 2 ( a + b ) 2 f(a,b,c)=(b+c-a)(c+a)^2(a+b)^2 f ( a , b , c ) = ( b + c − a ) ( c + a ) 2 ( a + b ) 2
X 264
外心の等距離共役点
isotomic conjugate of the circumcenter
f ( a , b , c ) = b 2 c 2 ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) f(a,b,c)=b^2c^2(a^2-b^2+c^2)(a^2+b^2-c^2) f ( a , b , c ) = b 2 c 2 ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 )
別表現
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) g(a,b,c)=a^2(b^2+c^2-a^2) g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 ) a 2 f(a,b,c)=\frac{(a^2-b^2+c^2)(a^2+b^2-c^2)}{a^2} f ( a , b , c ) = a 2 ( a 2 − b 2 + c 2 ) ( a 2 + b 2 − c 2 )
X 269
X 200 の等角共役点
(元の三角形とX 200 の外向三角形との配景の中心)
isogonal conjugate of X 200
(perspector of the reference triangle and the extraversion triangle of X 200 )
f ( a , b , c ) = a ( b + c − a ) 2 f(a,b,c)=\dfrac{a}{(b+c-a)^2} f ( a , b , c ) = ( b + c − a ) 2 a
別解
f ( a , b , c ) = a ( c + a − b ) 2 ( a + b − c ) 2 f(a,b,c)=a(c+a-b)^2(a+b-c)^2 f ( a , b , c ) = a ( c + a − b ) 2 ( a + b − c ) 2
X 273
X 212 の等角共役点
(X 78 の等距離共役点)
isogonal conjugate of X 212
(isotomic conjugate of X 78 )
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) b + c − a f(a,b,c)=\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{b+c-a} f ( a , b , c ) = b + c − a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 ) g(a,b,c)=(b+c-a)(b^2+c^2-a^2) g ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 )
X 274
X 213 の等角共役点
(X 37 の等距離共役点)
isogonal conjugate of X 213
(isotomic conjugate of X 37 )
f ( a , b , c ) = 1 a ( b + c ) f(a,b,c)=\dfrac{1}{a(b+c)} f ( a , b , c ) = a ( b + c ) 1
別解
f ( a , b , c ) = b c ( a + b ) ( a + c ) f(a,b,c)=bc(a+b)(a+c) f ( a , b , c ) = b c ( a + b ) ( a + c )
X 277
X 218 の等角共役点
isogonal conjugate of X 218
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 + b 2 + c 2 − 2 a b − 2 a c g(a,b,c)=a^2+b^2+c^2-2ab-2ac g ( a , b , c ) = a 2 + b 2 + c 2 − 2 ab − 2 a c
X 278
X 219 の等角共役点
isogonal conjugate of X 219
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) b + c − a f(a,b,c)=\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{b+c-a} f ( a , b , c ) = b + c − a ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 ) g(a,b,c)=(b+c-a)(b^2+c^2-a^2) g ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 )
X 279
X 220 の等角共役点
isogonal conjugate of X 220
f ( a , b , c ) = 1 ( b + c − a ) 2 f(a,b,c)=\dfrac{1}{(b+c-a)^2} f ( a , b , c ) = ( b + c − a ) 2 1
別解
f ( a , b , c ) = ( c + a − b ) 2 ( a + b − c ) 2 f(a,b,c)=(c+a-b)^2(a+b-c)^2 f ( a , b , c ) = ( c + a − b ) 2 ( a + b − c ) 2
X 286
X 72 の等距離共役点
isotomic conjugate of X 72
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) a ( b + c ) f(a,b,c)=\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{a(b+c)} f ( a , b , c ) = a ( b + c ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b + c ) ( b 2 + c 2 − a 2 ) g(a,b,c)=a(b+c)(b^2+c^2-a^2) g ( a , b , c ) = a ( b + c ) ( b 2 + c 2 − a 2 )
X 291
第二シャリギン点
(元の三角形と第一シャリギン点の外向三角形との配景の中心)
second Sharygin point
(perspector of the reference triangle and the extraversion triangle of the first Sharygin point)
f ( a , b , c ) = a ( a b − c 2 ) ( a c − b 2 ) f(a,b,c)=a(ab-c^2)(ac-b^2) f ( a , b , c ) = a ( ab − c 2 ) ( a c − b 2 )
X 298
第一等角心の等距離共役点
isotomic conjugate of the first isogonic center
f ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) + 4 Δ f(a,b,c)=\sqrt{3}(b^2+c^2-a^2)+4\Delta f ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) + 4Δ ただし、Δ \Delta Δ は元の三角形の面積
X 299
第二等角心の等距離共役点
isotomic conjugate of the second isogonic center
f ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) − 4 Δ f(a,b,c)=\sqrt{3}(b^2+c^2-a^2)-4\Delta f ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) − 4Δ ただし、Δ \Delta Δ は元の三角形の面積
X 300
第一等力点の等距離共役点
isotomic conjugate of the first isodynamic point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) + 4 Δ ] g(a,b,c)=a^2[\sqrt{3}(b^2+c^2-a^2)+4\Delta] g ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) + 4Δ ] 、 Δ \Delta Δ は元の三角形の面積
別解1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) a 2 f(a,b,c)=\dfrac{g(b,c,a)g(c,a,b)}{a^2} f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) + 4 Δ g(a,b,c)=\sqrt{3}(b^2+c^2-a^2)+4\Delta g ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) + 4Δ 、 Δ \Delta Δ は元の三角形の面積
別解2
f ( a , b , c ) = a 2 + b 2 + c 2 + 4 3 Δ − 2 ( b 2 − c 2 ) 2 a 2 f(a,b,c)=a^2+b^2+c^2+4\sqrt{3}\Delta-\dfrac{2(b^2-c^2)^2}{a^2} f ( a , b , c ) = a 2 + b 2 + c 2 + 4 3 Δ − a 2 2 ( b 2 − c 2 ) 2 ただし、Δ \Delta Δ は元の三角形の面積
X 301
第二等力点の等距離共役点
isotomic conjugate of the second isodynamic point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) − 4 Δ ] g(a,b,c)=a^2[\sqrt{3}(b^2+c^2-a^2)-4\Delta] g ( a , b , c ) = a 2 [ 3 ( b 2 + c 2 − a 2 ) − 4Δ ] 、 Δ \Delta Δ は元の三角形の面積
別解1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) a 2 f(a,b,c)=\dfrac{g(b,c,a)g(c,a,b)}{a^2} f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) − 4 Δ g(a,b,c)=\sqrt{3}(b^2+c^2-a^2)-4\Delta g ( a , b , c ) = 3 ( b 2 + c 2 − a 2 ) − 4Δ 、 Δ \Delta Δ は元の三角形の面積
別解2
f ( a , b , c ) = a 2 + b 2 + c 2 − 4 3 Δ − 2 ( b 2 − c 2 ) 2 a 2 f(a,b,c)=a^2+b^2+c^2-4\sqrt{3}\Delta-\dfrac{2(b^2-c^2)^2}{a^2} f ( a , b , c ) = a 2 + b 2 + c 2 − 4 3 Δ − a 2 2 ( b 2 − c 2 ) 2 ただし、Δ \Delta Δ は元の三角形の面積
X 302
第一ナポレオン点の等距離共役点
isotomic conjugate of the first Napoleon point
f ( a , b , c ) = b 2 + c 2 − a 2 + 4 3 Δ f(a,b,c)=b^2+c^2-a^2+4\sqrt{3}\Delta f ( a , b , c ) = b 2 + c 2 − a 2 + 4 3 Δ ただし、Δ \Delta Δ は元の三角形の面積
X 303
第二ナポレオン点の等距離共役点
isotomic conjugate of the second Napoleon point
f ( a , b , c ) = b 2 + c 2 − a 2 − 4 3 Δ f(a,b,c)=b^2+c^2-a^2-4\sqrt{3}\Delta f ( a , b , c ) = b 2 + c 2 − a 2 − 4 3 Δ ただし、Δ \Delta Δ は元の三角形の面積
X 304
クローソン点の等距離共役点
isotomic conjugate of the Clawson point
f ( a , b , c ) = b 2 + c 2 − a 2 a f(a,b,c)=\dfrac{b^2+c^2-a^2}{a} f ( a , b , c ) = a b 2 + c 2 − a 2
別解
f ( a , b , c ) = b c ( b 2 + c 2 − a 2 ) f(a,b,c)=bc(b^2+c^2-a^2) f ( a , b , c ) = b c ( b 2 + c 2 − a 2 )
X 305
X 25 の等距離共役点
isotomic conjugate of X 25
f ( a , b , c ) = b 2 + c 2 − a 2 a 2 f(a,b,c)=\dfrac{b^2+c^2-a^2}{a^2} f ( a , b , c ) = a 2 b 2 + c 2 − a 2
別解
f ( a , b , c ) = b 2 c 2 ( b 2 + c 2 − a 2 ) f(a,b,c)=b^2c^2(b^2+c^2-a^2) f ( a , b , c ) = b 2 c 2 ( b 2 + c 2 − a 2 )
X 306
X 27 の等距離共役点
isotomic conjugate of X 27
f ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=(b+c)(b^2+c^2-a^2) f ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 )
X 307
X 29 の等距離共役点
isotomic conjugate of X 29
f ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 ) b + c − a f(a,b,c)=\dfrac{(b+c)(b^2+c^2-a^2)}{b+c-a} f ( a , b , c ) = b + c − a ( b + c ) ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = ( b + c ) ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=(b+c)(c+a-b)(a+b-c)(b^2+c^2-a^2) f ( a , b , c ) = ( b + c ) ( c + a − b ) ( a + b − c ) ( b 2 + c 2 − a 2 )
X 308
ブロカール中点の等距離共役点
isotomic conjugate of the Brocard midpoint
f ( a , b , c ) = 1 a 2 ( b 2 + c 2 ) f(a,b,c)=\dfrac{1}{a^2(b^2+c^2)} f ( a , b , c ) = a 2 ( b 2 + c 2 ) 1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 ) g(a,b,c)=a^2(b^2+c^2) g ( a , b , c ) = a 2 ( b 2 + c 2 )
X 309
ベバン点の等距離共役点
isotomic conjugate of the Bevan point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b c + a − b + c a + b − c − a b + c − a ) g(a,b,c)=a\left(\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}-\dfrac{a}{b+c-a}\right) g ( a , b , c ) = a ( c + a − b b + a + b − c c − b + c − a a )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( b + c ) ( b − c ) 2 ] g(a,b,c)=a[a^3+a^2(b+c)-a(b+c)^2-(b+c)(b-c)^2] g ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b + c ) 2 − ( b + c ) ( b − c ) 2 ]
X 310
X 42 の等距離共役点
isotomic conjugate of X 42
f ( a , b , c ) = 1 a 2 ( b + c ) f(a,b,c)=\dfrac{1}{a^2(b+c)} f ( a , b , c ) = a 2 ( b + c ) 1
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b + c ) g(a,b,c)=a^2(b+c) g ( a , b , c ) = a 2 ( b + c )
X 311
コスニタ点の等距離共役点
isotomic conjugate of the Kosnita point
f ( a , b , c ) = b 2 + c 2 − ( b 2 − c 2 ) 2 a 2 f(a,b,c)=b^2+c^2-\dfrac{(b^2-c^2)^2}{a^2} f ( a , b , c ) = b 2 + c 2 − a 2 ( b 2 − c 2 ) 2
別解
f ( a , b , c ) = b 2 c 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=b^2c^2[a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = b 2 c 2 [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 312
X 57 の等距離共役点
(元の三角形とX 85 の外向三角形との配景の中心)
isotomic conjugate of X 57
(perspector of the reference triangle and the extraversion triangle of X 85 )
f ( a , b , c ) = b + c − a a f(a,b,c)=\dfrac{b+c-a}{a} f ( a , b , c ) = a b + c − a
別解
f ( a , b , c ) = b c ( b + c − a ) f(a,b,c)=bc(b+c-a) f ( a , b , c ) = b c ( b + c − a )
X 313
X 58 の等距離共役点
isotomic conjugate of X 58
f ( a , b , c ) = b + c a 2 f(a,b,c)=\dfrac{b+c}{a^2} f ( a , b , c ) = a 2 b + c
別解
f ( a , b , c ) = b 2 c 2 ( b + c ) f(a,b,c)=b^2c^2(b+c) f ( a , b , c ) = b 2 c 2 ( b + c )
X 314
X 65 の等距離共役点
isotomic conjugate of X 65
f ( a , b , c ) = b + c − a a ( b + c ) f(a,b,c)=\dfrac{b+c-a}{a(b+c)} f ( a , b , c ) = a ( b + c ) b + c − a
別解
f ( a , b , c ) = b c ( a + b ) ( a + c ) ( b + c − a ) f(a,b,c)=bc(a+b)(a+c)(b+c-a) f ( a , b , c ) = b c ( a + b ) ( a + c ) ( b + c − a )
X 315
X 66 の等距離共役点
isotomic conjugate of X 66
f ( a , b , c ) = b 4 + c 4 − a 4 f(a,b,c)=b^4+c^4-a^4 f ( a , b , c ) = b 4 + c 4 − a 4
X 316
ドルッサン要[ かなめ ]
(X 67 の等距離共役点)
Droussent pivot
(isotomic conjugate of X 67 )
f ( a , b , c ) = b 4 + c 4 − a 4 − b 2 c 2 f(a,b,c)=b^4+c^4-a^4-b^2c^2 f ( a , b , c ) = b 4 + c 4 − a 4 − b 2 c 2
X 319
X 79 の等距離共役点
isotomic conjugate of X 79
f ( a , b , c ) = a 2 − b 2 − b c − c 2 f(a,b,c)=a^2-b^2-bc-c^2 f ( a , b , c ) = a 2 − b 2 − b c − c 2
X 320
X 80 の等距離共役点
isotomic conjugate of X 80
f ( a , b , c ) = a 2 − b 2 + b c − c 2 f(a,b,c)=a^2-b^2+bc-c^2 f ( a , b , c ) = a 2 − b 2 + b c − c 2
X 331
X 219 の等距離共役点
isotomic conjugate of X 219
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) a 2 ( b + c − a ) f(a,b,c)=\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{a^2(b+c-a)} f ( a , b , c ) = a 2 ( b + c − a ) ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b + c − a ) ( b 2 + c 2 − a 2 ) g(a,b,c)=a^2(b+c-a)(b^2+c^2-a^2) g ( a , b , c ) = a 2 ( b + c − a ) ( b 2 + c 2 − a 2 )
X 344
X 277 の等距離共役点
isotomic conjugate of X 277
f ( a , b , c ) = a 2 + b 2 + c 2 − 2 a b − 2 a c f(a,b,c)=a^2+b^2+c^2-2ab-2ac f ( a , b , c ) = a 2 + b 2 + c 2 − 2 ab − 2 a c
X 345
X 278 の等距離共役点
isotomic conjugate of X 278
f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 ) f(a,b,c)=(b+c-a)(b^2+c^2-a^2) f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 )
X 346
X 279 の等距離共役点
(第一安島マルファッティ点とイフ・マルファッティ点の重心座標積)
isotomic conjugate of X 279
(barycentric product of the first Ajima-Malfatti point and the Yff-Malfatti point)
f ( a , b , c ) = ( b + c − a ) 2 f(a,b,c)=(b+c-a)^2 f ( a , b , c ) = ( b + c − a ) 2
X 354
ヴァイル点
(ジェルゴンヌ三角形の重心)
Weill point
(centroid of the Gergonne triangle)
f ( a , b , c ) = a [ a ( b + c ) − ( b − c ) 2 ] f(a,b,c)=a[a(b+c)-(b-c)^2] f ( a , b , c ) = a [ a ( b + c ) − ( b − c ) 2 ]
X 355
フールマン心
Fuhrmann center
f ( a , b , c ) = a 4 − a 3 ( b + c ) + 2 a 2 b c + a ( b + c ) ( b − c ) 2 − ( b + c ) 2 ( b − c ) 2 f(a,b,c)=a^4-a^3(b+c)+2a^2bc+a(b+c)(b-c)^2-(b+c)^2(b-c)^2 f ( a , b , c ) = a 4 − a 3 ( b + c ) + 2 a 2 b c + a ( b + c ) ( b − c ) 2 − ( b + c ) 2 ( b − c ) 2
X 356
第一モーリー三角形の中心
center of the first Morley triangle
f ( a , b , c ) = a ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\left(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\right) f ( a , b , c ) = a ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
f ( a , b , c ) = a ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\biggl(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\biggr) f ( a , b , c ) = a ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
X 357
第一モーリー・テーラー・マール心
(第一モーリー三角形と元の三角形の配景の中心)
(第二モーリー・テーラー・マール心の等角共役点)
first Morley-Tailor-Marr center
(perspector of the first Morley triangle and the reference triangle)
(isogonal conjugate of the second Morley-Tailor-Marr center)
f ( a , b , c ) = a φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) f(a,b,c)=a\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right) f ( a , b , c ) = a φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
別解
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) f(a,b,c)=\dfrac{a}{\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)} f ( a , b , c ) = φ ( 2 b c b 2 + c 2 − a 2 ) a ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
X 358
第二モーリー・テーラー・マール心
(第一モーリー付属三角形と元の三角形の配景の中心)
(第一モーリー三角形と第二モーリー三角形の配景の中心)
(第一モーリー・テーラー・マール心の等角共役点)
second Morley-Tailor-Marr center
(perspector of the first adjunct Morley triangle and the reference triangle)
(perspector of the first adjunct Morley triangle and the second Morley triangle)
(isogonal conjugate of the first Morley-Tailor-Marr center)
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) f(a,b,c)=a\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right) f ( a , b , c ) = a φ ( 2 b c b 2 + c 2 − a 2 ) ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
X 365
三線平方根点
trilinear square root point
f ( a , b , c ) = a 3 / 2 f(a,b,c)=a^{3/2} f ( a , b , c ) = a 3/2
X 366
三線平方根点の等角共役点
isogonal conjugate of the trilinear square root point
f ( a , b , c ) = a 1 / 2 f(a,b,c)=a^{1/2} f ( a , b , c ) = a 1/2
X 371
剣持点
(合同正方形点)
Kenmochi point
(congruent squares point)
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + 4 Δ ) f(a,b,c)=a^2(b^2+c^2-a^2+4\Delta) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + 4Δ ) ただし、Δ \Delta Δ は元の三角形の面積
X 373
重心の垂足三角形の重心
centroid of the pedal triangle of the centroid
f ( a , b , c ) = a 2 ( a 2 ( b 2 + c 2 ) − b 4 + 6 b 2 c 2 − c 4 ) f(a,b,c)=a^2(a^2(b^2+c^2)-b^4+6b^2c^2-c^4) f ( a , b , c ) = a 2 ( a 2 ( b 2 + c 2 ) − b 4 + 6 b 2 c 2 − c 4 )
X 372
剣持点の外心類似重心調和共役点
circumcenter-symmedian-point-harmonic conjugate of the Kenmochi point
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − 4 Δ ) f(a,b,c)=a^2(b^2+c^2-a^2-4\Delta) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − 4Δ ) ただし、Δ \Delta Δ は元の三角形の面積
X 375
シュピーカー心の垂足三角形の重心
centroid of the pedal triangle of the Spieker center
f ( a , b , c ) = a 2 ( b 2 + c 2 ) − a b c ( b + c ) − ( b + c ) 2 ( b 2 − 3 b c + c 2 ) f(a,b,c)=a^2(b^2+c^2)-abc(b+c)-(b+c)^2(b^2-3bc+c^2) f ( a , b , c ) = a 2 ( b 2 + c 2 ) − ab c ( b + c ) − ( b + c ) 2 ( b 2 − 3 b c + c 2 )
X 376
重心の反垂足三角形の重心
centroid of the antipedal triangle of the centroid
f ( a , b , c ) = 5 a 4 − 4 a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 f(a,b,c)=5a^4-4a^2(b^2+c^2)-(b^2-c^2)^2 f ( a , b , c ) = 5 a 4 − 4 a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
X 381
重心と垂心の中点
midpoint of the centroid and the orthocenter
f ( a , b , c ) = a 4 + a 2 ( b 2 + c 2 ) − 2 ( b 2 − c 2 ) 2 f(a,b,c)=a^4+a^2(b^2+c^2)-2(b^2-c^2)^2 f ( a , b , c ) = a 4 + a 2 ( b 2 + c 2 ) − 2 ( b 2 − c 2 ) 2
X 390
ジェルゴンヌ点の内心についての鏡映
reflection of the Gergonne point in the incenter
f ( a , b , c ) = ( b + c − a ) [ 3 a 2 + ( b − c ) 2 ] f(a,b,c)=(b+c-a)[3a^2+(b-c)^2] f ( a , b , c ) = ( b + c − a ) [ 3 a 2 + ( b − c ) 2 ]
X 395
第二等角心と第二等力点の中点
midpoint of the second isogonic center and the second isodynamic point
f ( a , b , c ) = 3 a 2 − 4 Δ f(a,b,c)=\sqrt{3}a^2-4\Delta f ( a , b , c ) = 3 a 2 − 4Δ ただし、Δ \Delta Δ は元の三角形の面積
X 396
第一等角心と第一等力点の中点
midpoint of the first isogonic center and the first isodynamic point
f ( a , b , c ) = 3 a 2 + 4 Δ f(a,b,c)=\sqrt{3}a^2+4\Delta f ( a , b , c ) = 3 a 2 + 4Δ ただし、Δ \Delta Δ は元の三角形の面積
X 400
イフ・マルファッティ点
Yff-Malfatti point
f ( a , b , c ) = 1 ( 2 b c − ( a + b + c ) ( b + c − a ) ) 2 f(a,b,c)=\dfrac{1}{\left(2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)}\right)^2} f ( a , b , c ) = ( 2 b c − ( a + b + c ) ( b + c − a ) ) 2 1
別表現
f ( a , b , c ) = 1 b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\dfrac{1}{b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}} f ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) 1
別解1
f ( a , b , c ) = ( b + c − a ) 2 ( 2 b c + ( a + b + c ) ( b + c − a ) ) 2 f(a,b,c)=(b+c-a)^2\left(2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)}\right)^2 f ( a , b , c ) = ( b + c − a ) 2 ( 2 b c + ( a + b + c ) ( b + c − a ) ) 2
別解1の別表現
f ( a , b , c ) = ( b + c − a ) 2 [ b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ] f(a,b,c)=(b+c-a)^2[b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}] f ( a , b , c ) = ( b + c − a ) 2 [ b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ]
別解2
f ( a , b , c ) = a ( 1 − ( a + b + c ) ( b + c − a ) 4 b c ) 2 f(a,b,c)=\dfrac{a}{\left(1-\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}\right)^2} f ( a , b , c ) = ( 1 − 4 b c ( a + b + c ) ( b + c − a ) ) 2 a
X 483
マルファッティ円の根心
(マルファッチ三角形の内心)
radical center of the Malfatti circles
(incenter of the Malfatti triangle)
f ( a , b , c ) = a 2 b c + ( a + b + c ) ( b + c − a ) f(a,b,c)=\dfrac{\sqrt{a}}{2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)}} f ( a , b , c ) = 2 b c + ( a + b + c ) ( b + c − a ) a
別表現
f ( a , b , c ) = a f b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\sqrt{\dfrac{a\vphantom{f}}{b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}}} f ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) a f
別表現
f ( a , b , c ) = a f b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\sqrt{\dfrac{a\vphantom{f}}{b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}}} f ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) a f
別表現
f ( a , b , c ) = [ a / ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) ] 1 / 2 f(a,b,c)=[a/(b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)})]^{1/2} f ( a , b , c ) = [ a / ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) ] 1/2
別解1
f ( a , b , c ) = 1 2 b c + b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\dfrac{1}{2bc+\sqrt{bc(a+b+c)(b+c-a)}} f ( a , b , c ) = 2 b c + b c ( a + b + c ) ( b + c − a ) 1
別解1の別表現
f ( a , b , c ) = 1 b c ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) f(a,b,c)=\dfrac{1}{\sqrt{bc\left(b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}\right)}} f ( a , b , c ) = b c ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) 1
別解1の別表現
f ( a , b , c ) = [ b c ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ] − 1 / 2 f(a,b,c)=[bc(b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}]^{-1/2} f ( a , b , c ) = [ b c ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ] − 1/2
別解2
f ( a , b , c ) = ( b + c − a ) a ( 2 b c − ( a + b + c ) ( b + c − a ) ) f(a,b,c)=(b+c-a)\sqrt{a}\left(2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)}\right) f ( a , b , c ) = ( b + c − a ) a ( 2 b c − ( a + b + c ) ( b + c − a ) )
別解2の別表現
f ( a , b , c ) = ( b + c − a ) a ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ) f(a,b,c)=(b+c-a)\sqrt{a\left(b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}\right)} f ( a , b , c ) = ( b + c − a ) a ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) )
別解2の別表現
f ( a , b , c ) = ( b + c − a ) [ a ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ] 1 / 2 f(a,b,c)=(b+c-a)[a(b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}]^{1/2} f ( a , b , c ) = ( b + c − a ) [ a ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ] 1/2
別解3
f ( a , b , c ) = a 1 + ( a + b + c ) ( b + c − a ) 4 b c f(a,b,c)=\dfrac{a}{1+\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}} f ( a , b , c ) = 1 + 4 b c ( a + b + c ) ( b + c − a ) a
別解4
f ( a , b , c ) = ( b + c − a ) ( 1 − ( a + b + c ) ( b + c − a ) 4 b c ) f(a,b,c)=(b+c-a)\left(1-\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}\right) f ( a , b , c ) = ( b + c − a ) ( 1 − 4 b c ( a + b + c ) ( b + c − a ) )
X 500
内心三角形の垂心
orthocenter of the incentral triangle
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c ) ( a 2 ( b + c ) + 2 a b c − ( b − c ) 2 ( b + c ) ) f(a,b,c)=a^2(b^2+c^2-a^2+bc)(a^2(b+c)+2abc-(b-c)^2(b+c)) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c ) ( a 2 ( b + c ) + 2 ab c − ( b − c ) 2 ( b + c ))
X 511
直線X 3 X 6 と無限遠直線の交点
(タリー点の等角共役点)
intersection of the line X 3 X 6 and the line at infinity
(isogonal conjugate of the Tarry point)
f ( a , b , c ) = a 2 ( a 2 ( b 2 + c 2 ) − b 4 − c 4 ) f(a,b,c)=a^2(a^2(b^2+c^2)-b^4-c^4) f ( a , b , c ) = a 2 ( a 2 ( b 2 + c 2 ) − b 4 − c 4 )
X 512
シュタイナー点の等角共役点
isogonal conjugate of the Steiner point
f ( a , b , c ) = a 2 ( b 2 − c 2 ) f(a,b,c)=a^2(b^2-c^2) f ( a , b , c ) = a 2 ( b 2 − c 2 )
X 513
フォイエルバッハ点の反補点の等角共役点
isogonal conjugate of the anticomplement of the Feuerbach point
f ( a , b , c ) = a ( b − c ) f(a,b,c)=a(b-c) f ( a , b , c ) = a ( b − c )
X 514
イフ放物線の焦点の等角共役点
isogonal conjugate of the focus of the Yff Parabola
f ( a , b , c ) = b − c f(a,b,c)=b-c f ( a , b , c ) = b − c
X 519
直線X 1 X 2 と無限遠直線の交点
intersection of the line X 1 X 2 and the line at infinity
f ( a , b , c ) = 2 a − b − c f(a,b,c)=2a-b-c f ( a , b , c ) = 2 a − b − c
X 527
直線X 2 X 7 と無限遠直線の交点
intersection of the line X 2 X 7 and the line at infinity
f ( a , b , c ) = 2 a 2 − a ( b + c ) − ( b − c ) 2 f(a,b,c)=2a^2-a(b+c)-(b-c)^2 f ( a , b , c ) = 2 a 2 − a ( b + c ) − ( b − c ) 2
X 528
直線X 2 X 11 と無限遠直線の交点
intersection of the line X 2 X 11 and the line at infinity
f ( a , b , c ) = 2 a 3 − 2 a 2 ( b + c ) + a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c ) f(a,b,c)=2a^3-2a^2(b+c)+a(b^2+c^2)-(b-c)^2(b+c) f ( a , b , c ) = 2 a 3 − 2 a 2 ( b + c ) + a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c )
X 529
直線X 2 X 12 と無限遠直線の交点
intersection of the line X 2 X 12 and the line at infinity
f ( a , b , c ) = 2 a 4 − a 2 ( b 2 − 4 b c + c 2 ) − 2 a b c ( b + c ) − ( b − c ) 2 ( b + c ) 2 f(a,b,c)=2a^4-a^2(b^2-4bc+c^2)-2abc(b+c)-(b-c)^2(b+c)^2 f ( a , b , c ) = 2 a 4 − a 2 ( b 2 − 4 b c + c 2 ) − 2 ab c ( b + c ) − ( b − c ) 2 ( b + c ) 2
X 534
直線X 2 X 19 と無限遠直線の交点
intersection of the line X 2 X 19 and the line at infinity
f ( a , b , c ) = 2 a 5 + a 4 ( b + c ) − 2 a 2 b c ( b + c ) − 2 a ( b − c ) 2 ( b + c ) 2 − ( b − c ) 2 ( b + c ) ( b 2 + c 2 ) f(a,b,c)=2a^5+a^4(b+c)-2a^2bc(b+c)-2a(b-c)^2(b+c)^2-(b-c)^2(b+c)(b^2+c^2) f ( a , b , c ) = 2 a 5 + a 4 ( b + c ) − 2 a 2 b c ( b + c ) − 2 a ( b − c ) 2 ( b + c ) 2 − ( b − c ) 2 ( b + c ) ( b 2 + c 2 )
X 535
直線X 2 X 36 と無限遠直線の交点
intersection of the line X 2 X 36 and the line at infinity
f ( a , b , c ) = 2 a 4 − a 2 ( b − c ) 2 − a b c ( b + c ) − ( b − c ) 2 ( b + c ) 2 f(a,b,c)=2a^4-a^2(b-c)^2-abc(b+c)-(b-c)^2(b+c)^2 f ( a , b , c ) = 2 a 4 − a 2 ( b − c ) 2 − ab c ( b + c ) − ( b − c ) 2 ( b + c ) 2
X 546
垂心と九点円の中心の中点
midpoint of the orthocenter and the nine-point center
f ( a , b , c ) = 2 a 4 + a 2 ( b 2 + c 2 ) − 3 ( b 2 − c 2 ) 2 f(a,b,c)=2a^4+a^2(b^2+c^2)-3(b^2-c^2)^2 f ( a , b , c ) = 2 a 4 + a 2 ( b 2 + c 2 ) − 3 ( b 2 − c 2 ) 2
X 547
重心と九点円の中心の中点
midpoint of the centroid and the nine-point center
f ( a , b , c ) = 2 a 4 − 7 a 2 ( b 2 + c 2 ) + 5 ( b 2 − c 2 ) 2 f(a,b,c)=2a^4-7a^2(b^2+c^2)+5(b^2-c^2)^2 f ( a , b , c ) = 2 a 4 − 7 a 2 ( b 2 + c 2 ) + 5 ( b 2 − c 2 ) 2
X 548
九点円の中心とド・ロンシャン点の中点
midpoint of the nine-point center and the de Longchamps point
f ( a , b , c ) = − 6 a 4 + 5 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 f(a,b,c)=-6a^4+5a^2(b^2+c^2)+(b^2-c^2)^2 f ( a , b , c ) = − 6 a 4 + 5 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
X 549
重心と外心の中点
midpoint of the centroid and the circumcenter
f ( a , b , c ) = 4 a 4 − 5 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 f(a,b,c)=4a^4-5a^2(b^2+c^2)+(b^2-c^2)^2 f ( a , b , c ) = 4 a 4 − 5 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
X 550
外心とド・ロンシャン点の中点
midpoint of the circumcenter and the de Longchamps point
f ( a , b , c ) = − 4 a 4 + 3 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 f(a,b,c)=-4a^4+3a^2(b^2+c^2)+(b^2-c^2)^2 f ( a , b , c ) = − 4 a 4 + 3 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
X 551
内心と重心の中点
midpoint of the incenter and the centroid
f ( a , b , c ) = 4 a + b + c f(a,b,c)=4a+b+c f ( a , b , c ) = 4 a + b + c
X 560
三線四乗点
trilinear fourth power point
f ( a , b , c ) = a 5 f(a,b,c)=a^5 f ( a , b , c ) = a 5
X 561
三線四乗点の等角共役点
(三線二乗点の等距離共役点)
isogonal conjugate of the trilinear fourth power point
(isotomic conjugate of the trilinear second power point)
f ( a , b , c ) = 1 a 3 f(a,b,c)=\dfrac{1}{a^3} f ( a , b , c ) = a 3 1
別解
f ( a , b , c ) = b 3 c 3 f(a,b,c)=b^3c^3 f ( a , b , c ) = b 3 c 3
X 597
重心と類似重心の中点
midpoint of the centroid and the symmedian point
f ( a , b , c ) = 4 a 2 + b 2 + c 2 f(a,b,c)=4a^2+b^2+c^2 f ( a , b , c ) = 4 a 2 + b 2 + c 2
X 598
X 599 の等距離共役点
isotomic conjugate of X 599
f ( a , b , c ) = ( 2 a 2 − b 2 + 2 c 2 ) ( 2 a 2 + 2 b 2 − c 2 ) f(a,b,c)=(2a^2-b^2+2c^2)(2a^2+2b^2-c^2) f ( a , b , c ) = ( 2 a 2 − b 2 + 2 c 2 ) ( 2 a 2 + 2 b 2 − c 2 )
X 599
類似重心の重心に関する鏡映
reflection of the symmedian point in the centroid
f ( a , b , c ) = a 2 − 2 b 2 − 2 c 2 f(a,b,c)=a^2-2b^2-2c^2 f ( a , b , c ) = a 2 − 2 b 2 − 2 c 2
X 604
元の三角形とX 41 の外向三角形との配景の中心
perspector of the reference triangle and the extraversion triangle of X 41
f ( a , b , c ) = a 3 b + c − a f(a,b,c)=\dfrac{a^3}{b+c-a} f ( a , b , c ) = b + c − a a 3
別解
f ( a , b , c ) = a 3 ( c + a − b ) ( a + b − c ) f(a,b,c)=a^3(c+a-b)(a+b-c) f ( a , b , c ) = a 3 ( c + a − b ) ( a + b − c )
X 726
(名称検討中)
(name pending)
f ( a , b , c ) = a ( b 2 + c 2 ) − b c ( b + c ) f(a,b,c)=a(b^2+c^2)-bc(b+c) f ( a , b , c ) = a ( b 2 + c 2 ) − b c ( b + c )
X 727
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 [ a 2 ( b − c ) − a c 2 + b c 2 ] [ a 2 ( b − c ) + a b 2 − b 2 c ] f(a,b,c)=a^2[a^2(b-c)-ac^2+bc^2][a^2(b-c)+ab^2-b^2c] f ( a , b , c ) = a 2 [ a 2 ( b − c ) − a c 2 + b c 2 ] [ a 2 ( b − c ) + a b 2 − b 2 c ]
X 942
ジェルゴンヌ三角形の九点円の中心
nine-point center of the Gergonne triangle
f ( a , b , c ) = a [ a 2 ( b + c ) + 2 a b c − ( b − c ) 2 ( b + c ) ] f(a,b,c)=a[a^2(b+c)+2abc-(b-c)^2(b+c)] f ( a , b , c ) = a [ a 2 ( b + c ) + 2 ab c − ( b − c ) 2 ( b + c )]
X 943
ジェルゴンヌ三角形の九点円の中心の等角共役点
isogonal conjugate of the nine-point center of the Gergonne triangle
f ( a , b , c ) = a [ a 3 − a 2 c − a ( b + c ) 2 − c ( b − c ) ( b + c ) ] [ a 3 − a 2 b − a ( b + c ) 2 + b ( b − c ) ( b + c ) ] f(a,b,c)=a[a^3-a^2c-a(b+c)^2-c(b-c)(b+c)][a^3-a^2b-a(b+c)^2+b(b-c)(b+c)] f ( a , b , c ) = a [ a 3 − a 2 c − a ( b + c ) 2 − c ( b − c ) ( b + c )] [ a 3 − a 2 b − a ( b + c ) 2 + b ( b − c ) ( b + c )]
別表現
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b + c ) + 2 a b c − ( b − c ) 2 ( b + c ) g(a,b,c)=a^2(b+c)+2abc-(b-c)^2(b+c) g ( a , b , c ) = a 2 ( b + c ) + 2 ab c − ( b − c ) 2 ( b + c )
X 946
内心と垂心の中点
midpoint of the incenter and the orthocenter
f ( a , b , c ) = a 3 ( b + c ) + ( b − c ) 2 [ a 2 − a ( b + c ) − ( b + c ) 2 ] f(a,b,c)=a^3(b+c)+(b-c)^2[a^2-a(b+c)-(b+c)^2] f ( a , b , c ) = a 3 ( b + c ) + ( b − c ) 2 [ a 2 − a ( b + c ) − ( b + c ) 2 ]
X 1001
内心とミッテンプンクトの中点
midpoint of the incenter and mittenpunkt
f ( a , b , c ) = a [ a 2 − a ( b + c ) − 2 b c ] f(a,b,c)=a[a^2-a(b+c)-2bc] f ( a , b , c ) = a [ a 2 − a ( b + c ) − 2 b c ]
X 1002
X 1001 の等角共役点
isogonal conjugate of X 1001
f ( a , b , c ) = a a 2 − a ( b + c ) − 2 b c f(a,b,c)=\dfrac{a}{a^2-a(b+c)-2bc} f ( a , b , c ) = a 2 − a ( b + c ) − 2 b c a
別解
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 − a ( b + c ) − 2 b c g(a,b,c)=a^2-a(b+c)-2bc g ( a , b , c ) = a 2 − a ( b + c ) − 2 b c
別解の別表現
f ( a , b , c ) = a [ a ( b + 2 c ) − b ( b − c ) ] [ a ( 2 b + c ) + b ( b − c ) ] f(a,b,c)=a[a(b+2c)-b(b-c)][a(2b+c)+b(b-c)] f ( a , b , c ) = a [ a ( b + 2 c ) − b ( b − c )] [ a ( 2 b + c ) + b ( b − c )]
X 1125
シュピーカー心の補点
(内心とシュピーカー心の中点)
complement of the Spieker center
(midpoint of the incenter and the Spieker center)
f ( a , b , c ) = 2 a + b + c f(a,b,c)=2a+b+c f ( a , b , c ) = 2 a + b + c
X 1134
第三モーリー・テーラー・マール心
(第三モーリー三角形と元の三角形の配景の中心)
(第四モーリー・テーラー・マール心の等角共役点)
third Morley-Tailor-Marr center
(perspector of the third Morley triangle and the reference triangle)
(isogonal conjugate of the fourth Morley-Tailor-Marr center)
f ( a , b , c ) = a φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) f(a,b,c)=a\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right) f ( a , b , c ) = a φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le -1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
別解
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) f(a,b,c)=\dfrac{a}{\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)} f ( a , b , c ) = φ ( 2 b c b 2 + c 2 − a 2 ) a ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le -1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
X 1135
第四モーリー・テーラー・マール心
(第三モーリー付属三角形と元の三角形の配景の中心)
(第三モーリー三角形と第一モーリー三角形の配景の中心)
(第三モーリー・テーラー・マール心の等角共役点)
fourth Morley-Tailor-Marr center
(perspector of the third adjunct Morley triangle and the reference triangle)
(perspector of the third adjunct Morley triangle and the first Morley triangle)
(isogonal conjugate of the third Morley-Tailor-Marr center)
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) f(a,b,c)=a\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right) f ( a , b , c ) = a φ ( 2 b c b 2 + c 2 − a 2 ) ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le -1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
X 1136
第五モーリー・テーラー・マール心
(第二モーリー三角形と元の三角形の配景の中心)
(第六モーリー・テーラー・マール心の等角共役点)
fifth Morley-Tailor-Marr center
(perspector of the second Morley triangle and the reference triangle)
(isogonal conjugate of the sixth Morley-Tailor-Marr center)
f ( a , b , c ) = a φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) f(a,b,c)=a\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right) f ( a , b , c ) = a φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 / 2 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1/2 \le x \le -1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1/2 ≤ x ≤ − 1/2
X 1137
第六モーリー・テーラー・マール心
(第二モーリー付属三角形と元の三角形の配景の中心)
(第二モーリー三角形と第三モーリー三角形の配景の中心)
(第五モーリー・テーラー・マール心の等角共役点)
sixth Morley-Tailor-Marr center
(perspector of the second adjunct Morley triangle and the reference triangle)
(perspector of the second adjunct Morley triangle and the third Morley triangle)
(isogonal conjugate of the fifth Morley-Tailor-Marr center)
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) f(a,b,c)=a\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right) f ( a , b , c ) = a φ ( 2 b c b 2 + c 2 − a 2 ) ただし、 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 / 2 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1/2 \le x \le -1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1/2 ≤ x ≤ − 1/2
X 1142
第一マルファッティ・ラビノヴィッツ点
first Malfatti-Rabinowitz point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) − a f(a,b,c)=\dfrac{g(b,c,a)g(c,a,b)}{g(a,b,c)}-a f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) − a
ただし、
g ( a , b , c ) = 2 b c + ( a + b + c ) ( b + c − a ) g(a,b,c)=2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)} g ( a , b , c ) = 2 b c + ( a + b + c ) ( b + c − a )
別表現1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) − a f(a,b,c)=\sqrt{\dfrac{g(b,c,a)g(c,a,b)}{g(a,b,c)}}-a f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) − a
ただし、
g ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) g(a,b,c)=b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)} g ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a )
別表現2
f ( a , b , c ) = a ( 2 g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) − 1 ) f(a,b,c)=a\left(\dfrac{2g(b,c,a)g(c,a,b)}{g(a,b,c)}-1\right) f ( a , b , c ) = a ( g ( a , b , c ) 2 g ( b , c , a ) g ( c , a , b ) − 1 )
ただし、
g ( a , b , c ) = 1 + ( a + b + c ) ( b + c − a ) 4 b c g(a,b,c)=1+\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}} g ( a , b , c ) = 1 + 4 b c ( a + b + c ) ( b + c − a )
X 1143
第二マルファッティ・ラビノヴィッツ点
second Malfatti-Rabinowitz point
f ( a , b , c ) = b + c − a ( 2 b c − ( a + b + c ) ( b + c − a ) ) f(a,b,c)=\sqrt{b+c-a}\left(2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)}\right) f ( a , b , c ) = b + c − a ( 2 b c − ( a + b + c ) ( b + c − a ) )
別表現
f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ) f(a,b,c)=\sqrt{(b+c-a)\left(b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}\right)} f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) )
別表現
f ( a , b , c ) = [ ( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ) ] 1 / 2 f(a,b,c)=[(b+c-a)(b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)})]^{1/2} f ( a , b , c ) = [( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ) ] 1/2
別解
f ( a , b , c ) = b + c − a 2 a ( 1 − ( a + b + c ) ( b + c − a ) 4 b c ) f(a,b,c)=\sqrt{\dfrac{b+c-a}{2a}}\left(1-\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}\right) f ( a , b , c ) = 2 a b + c − a ( 1 − 4 b c ( a + b + c ) ( b + c − a ) )
X 1274
第二マルファッティ・ラビノヴィッツ点の等距離共役点
(外第二マルファッティ・ラビノヴィッツ点)
isotomic conjugate of the second Malfatti-Rabinowitz point
(external second Malfatti-Rabinowitz point)
f ( a , b , c ) = b + c − a ( 2 b c + ( a + b + c ) ( b + c − a ) ) f(a,b,c)=\sqrt{b+c-a}\left(2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)}\right) f ( a , b , c ) = b + c − a ( 2 b c + ( a + b + c ) ( b + c − a ) )
別表現
f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) f(a,b,c)=\sqrt{(b+c-a)\left(b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}\right)} f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) )
別表現
f ( a , b , c ) = [ ( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ) ] 1 / 2 f(a,b,c)=[(b+c-a)(b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)})]^{1/2} f ( a , b , c ) = [( b + c − a ) ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ) ] 1/2
別解
f ( a , b , c ) = b + c − a 2 a ( 1 + ( a + b + c ) ( b + c − a ) 4 b c ) f(a,b,c)=\sqrt{\dfrac{b+c-a}{2a}}\left(1+\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}\right) f ( a , b , c ) = 2 a b + c − a ( 1 + 4 b c ( a + b + c ) ( b + c − a ) )
X 1385
内心と外心の中点
midpoint of the incenter and the circumcenter
f ( a , b , c ) = a [ a ( b 2 + c 2 − a 2 ) + ( b + c − a ) ( c + a − b ) ( a + b − c ) ] f(a,b,c)=a[a(b^2+c^2-a^2)+(b+c-a)(c+a-b)(a+b-c)] f ( a , b , c ) = a [ a ( b 2 + c 2 − a 2 ) + ( b + c − a ) ( c + a − b ) ( a + b − c )]
別表現
f ( a , b , c ) = a [ − 2 a 3 + a 2 ( b + c ) + 2 a ( b 2 − b c + c 2 ) − ( b − c ) 2 ( b + c ) ] f(a,b,c)=a[-2a^3+a^2(b+c)+2a(b^2-bc+c^2)-(b-c)^2(b+c)] f ( a , b , c ) = a [ − 2 a 3 + a 2 ( b + c ) + 2 a ( b 2 − b c + c 2 ) − ( b − c ) 2 ( b + c )]
X 1386
内心と類似重心の中点
midpoint of the incenter and the symmedian point
f ( a , b , c ) = a [ a ( a + b + c ) + ( a 2 + b 2 + c 2 ) ] f(a,b,c)=a[a(a+b+c)+(a^2+b^2+c^2)] f ( a , b , c ) = a [ a ( a + b + c ) + ( a 2 + b 2 + c 2 )]
別表現
f ( a , b , c ) = a [ 2 a 2 + a ( b + c ) + b 2 + c 2 ] f(a,b,c)=a[2a^2+a(b+c)+b^2+c^2] f ( a , b , c ) = a [ 2 a 2 + a ( b + c ) + b 2 + c 2 ]
X 1387
内心とフォイエルバッハ点の中点
midpoint of the incenter and the Feuerbach point
f ( a , b , c ) = 2 a [ a b c − ( b + c − a ) ( c + a − b ) ( a + b − c ) ] + ( b − c ) 2 ( a + b + c ) ( b + c − a ) f(a,b,c)=2a[abc-(b+c-a)(c+a-b)(a+b-c)]+(b-c)^2(a+b+c)(b+c-a) f ( a , b , c ) = 2 a [ ab c − ( b + c − a ) ( c + a − b ) ( a + b − c )] + ( b − c ) 2 ( a + b + c ) ( b + c − a )
別表現
f ( a , b , c ) = 2 a 4 − 2 a 3 ( b + c ) − a 2 ( 3 b 2 − 8 b c + 3 c 2 ) − 2 a ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2 f(a,b,c)=2a^4-2a^3(b+c)-a^2(3b^2-8bc+3c^2)-2a(b-c)^2(b+c)+(b-c)^2(b+c)^2 f ( a , b , c ) = 2 a 4 − 2 a 3 ( b + c ) − a 2 ( 3 b 2 − 8 b c + 3 c 2 ) − 2 a ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2
X 1441
シフラー点の等距離共役点
isotomic conjugate of the Schiffler point
f ( a , b , c ) = b + c a ( b + c − a ) f(a,b,c)=\dfrac{b+c}{a(b+c-a)} f ( a , b , c ) = a ( b + c − a ) b + c
別解
f ( a , b , c ) = ( b + c ) g ( b , c , a ) g ( c , a , b ) f(a,b,c)=(b+c)g(b,c,a)g(c,a,b) f ( a , b , c ) = ( b + c ) g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b + c − a ) g(a,b,c)=a(b+c-a) g ( a , b , c ) = a ( b + c − a )
X 1476
ジェルゴンヌ三角形のドロンシャン点の等角共役点
isogonal conjugate of the de Longchamps point of the Gergonne triangle
f ( a , b , c ) = a ( a − b + c ) ( a + b − c ) [ a 2 + a ( b − 2 c ) + c ( b + c ) ] [ a 2 − a ( 2 b − c ) + b ( b + c ) ] f(a,b,c)=a(a-b+c)(a+b-c)[a^2+a(b-2c)+c(b+c)][a^2-a(2b-c)+b(b+c)] f ( a , b , c ) = a ( a − b + c ) ( a + b − c ) [ a 2 + a ( b − 2 c ) + c ( b + c )] [ a 2 − a ( 2 b − c ) + b ( b + c )]
X 1482
(名称検討中)
(name pending)
f ( a , b , c ) = a [ a 3 − 2 a 2 ( b + c ) − a ( b 2 − 4 b c + c 2 ) + 2 ( b − c ) 2 ( b + c ) ] f(a,b,c)=a[a^3-2a^2(b+c)-a(b^2-4bc+c^2)+2(b-c)^2(b+c)] f ( a , b , c ) = a [ a 3 − 2 a 2 ( b + c ) − a ( b 2 − 4 b c + c 2 ) + 2 ( b − c ) 2 ( b + c )]
X 1489
第三ステヴァノヴィッチ点
third Stevanović point
f ( a , b , c ) = a [ 2 b c − ( a + b + c ) ( b + c − a ) − ( a − b + c ) ( a + b − c ) ] f(a,b,c)=\sqrt{a}[2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)}-\sqrt{(a-b+c)(a+b-c)}] f ( a , b , c ) = a [ 2 b c − ( a + b + c ) ( b + c − a ) − ( a − b + c ) ( a + b − c ) ]
別解1
f ( a , b , c ) = a [ 2 b c − b c ( a + b + c ) ( b + c − a ) − b c ( a − b + c ) ( a + b − c ) ] f(a,b,c)=a[2bc-\sqrt{bc(a+b+c)(b+c-a)}-\sqrt{bc(a-b+c)(a+b-c)}] f ( a , b , c ) = a [ 2 b c − b c ( a + b + c ) ( b + c − a ) − b c ( a − b + c ) ( a + b − c ) ]
別解2
f ( a , b , c ) = 1 − ( a + b + c ) ( b + c − a ) 4 b c − ( a − b + c ) ( a + b − c ) 4 b c f(a,b,c)=1-\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}-\sqrt{\dfrac{(a-b+c)(a+b-c)}{4bc}} f ( a , b , c ) = 1 − 4 b c ( a + b + c ) ( b + c − a ) − 4 b c ( a − b + c ) ( a + b − c )
X 1494
オイラー無限遠点の等距離共役点
isotomic conjugate of the Euler infinity point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 g(a,b,c)=2a^4-a^2(b^2+c^2)-(b^2-c^2)^2 g ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
別表現
f ( a , b , c ) = [ a 4 + a 2 ( b 2 − 2 c 2 ) − ( b 2 − c 2 ) ( 2 b 2 + c 2 ) ] [ a 4 − a 2 ( 2 b 2 − c 2 ) + ( b 2 − c 2 ) ( b 2 + 2 c 2 ) ] f(a,b,c)=[a^4+a^2(b^2-2c^2)-(b^2-c^2)(2b^2+c^2)][a^4-a^2(2b^2-c^2)+(b^2-c^2)(b^2+2c^2)] f ( a , b , c ) = [ a 4 + a 2 ( b 2 − 2 c 2 ) − ( b 2 − c 2 ) ( 2 b 2 + c 2 )] [ a 4 − a 2 ( 2 b 2 − c 2 ) + ( b 2 − c 2 ) ( b 2 + 2 c 2 )]
X 1501
三線五乗点
trilinear fifth power point
f ( a , b , c ) = a 6 f(a,b,c)=a^6 f ( a , b , c ) = a 6
X 1502
三線五乗点の等角共役点
(三線三乗点の等距離共役点)
isogonal conjugate of the trilinear fifth power point
(isotomic conjugate of the trilinear third power point)
f ( a , b , c ) = 1 a 4 f(a,b,c)=\dfrac{1}{a^4} f ( a , b , c ) = a 4 1
別解
f ( a , b , c ) = b 4 c 4 f(a,b,c)=b^4c^4 f ( a , b , c ) = b 4 c 4
X 1745
(名称検討中)
(name pending)
f ( a , b , c ) = a [ a 5 ( b + c ) + a 4 b c − 2 a 3 ( b + c ) ( b 2 − b c + c 2 ) + a ( b − c ) 2 ( b + c ) ( b 2 + c 2 ) − b c ( b − c ) 2 ( b + c ) 2 ] f(a,b,c)=a[a^5(b+c)+a^4bc-2a^3(b+c)(b^2-bc+c^2)+a(b-c)^2(b+c)(b^2+c^2)-bc(b-c)^2(b+c)^2] f ( a , b , c ) = a [ a 5 ( b + c ) + a 4 b c − 2 a 3 ( b + c ) ( b 2 − b c + c 2 ) + a ( b − c ) 2 ( b + c ) ( b 2 + c 2 ) − b c ( b − c ) 2 ( b + c ) 2 ]
X 1917
三線六乗点
trilinear sixth power point
f ( a , b , c ) = a 7 f(a,b,c)=a^7 f ( a , b , c ) = a 7
X 1928
三線六乗点の等角共役点
(三線四乗点の等距離共役点)
isogonal conjugate of the trilinear fourth power point
(isotomic conjugate of the trilinear second power point)
f ( a , b , c ) = 1 a 5 f(a,b,c)=\dfrac{1}{a^5} f ( a , b , c ) = a 5 1
別解
f ( a , b , c ) = b 5 c 5 f(a,b,c)=b^5c^5 f ( a , b , c ) = b 5 c 5
X 1962
内心三角形の重心
centroid of the incentral triangle
f ( a , b , c ) = a ( b + c ) ( 2 a + b + c ) f(a,b,c)=a(b+c)(2a+b+c) f ( a , b , c ) = a ( b + c ) ( 2 a + b + c )
X 1969
X 48 の等距離共役点
isotomic conjugate of X 48
f ( a , b , c ) = ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) a 3 f(a,b,c)=\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{a^3} f ( a , b , c ) = a 3 ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 3 ( b 2 + c 2 − a 2 ) g(a,b,c)=a^3(b^2+c^2-a^2) g ( a , b , c ) = a 3 ( b 2 + c 2 − a 2 )
X 2262
(名称検討中)
(name pending)
f ( a , b , c ) = a [ a 3 ( b + c ) + a 2 ( b − c ) 2 − a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b + c ) 2 ] f(a,b,c)=a[a^3(b+c)+a^2(b-c)^2-a(b-c)^2(b+c)-(b-c)^2(b+c)^2] f ( a , b , c ) = a [ a 3 ( b + c ) + a 2 ( b − c ) 2 − a ( b − c ) 2 ( b + c ) − ( b − c ) 2 ( b + c ) 2 ]
X 2550
シュピーカー円と円(X 4 ,2R )の内相似中心
(ジェルゴンヌ点とナーゲル点の中点)
insimilicenter of the Spieker circle and the circle(X 4 ,2R )
(midpoint of the Gergonne point and the Nagel point)
f ( a , b , c ) = b + c + ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 ) 4 a b c f(a,b,c)=b+c+\dfrac{(c^2+a^2-b^2)(a^2+b^2-c^2)}{4abc} f ( a , b , c ) = b + c + 4 ab c ( c 2 + a 2 − b 2 ) ( a 2 + b 2 − c 2 )
別解
f ( a , b , c ) = a 3 − a 2 ( b + c ) + a ( b + c ) 2 − ( b − c ) 2 ( b + c ) f(a,b,c)=a^3-a^2(b+c)+a(b+c)^2-(b-c)^2(b+c) f ( a , b , c ) = a 3 − a 2 ( b + c ) + a ( b + c ) 2 − ( b − c ) 2 ( b + c )
X 3057
ジェルゴンヌ三角形のドロンシャン点
de Longchamps point of the Gergonne triangle
f ( a , b , c ) = a ( b + c − a ) [ a ( b + c ) − ( b − c ) 2 ] f(a,b,c)=a(b+c-a)[a(b+c)-(b-c)^2] f ( a , b , c ) = a ( b + c − a ) [ a ( b + c ) − ( b − c ) 2 ]
X 3082
外マルファッティ円の根心
radical center of the external Malfatti circles
f ( a , b , c ) = a 2 b c − ( a + b + c ) ( b + c − a ) f(a,b,c)=\dfrac{\sqrt{a}}{2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)}} f ( a , b , c ) = 2 b c − ( a + b + c ) ( b + c − a ) a
別表現
f ( a , b , c ) = a f b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\sqrt{\dfrac{a\vphantom{f}}{b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}}} f ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) a f
別表現
f ( a , b , c ) = [ a / ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) ] 1 / 2 f(a,b,c)=[a/(b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)})]^{1/2} f ( a , b , c ) = [ a / ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ) ] 1/2
別解1
f ( a , b , c ) = 1 2 b c − b c ( a + b + c ) ( b + c − a ) f(a,b,c)=\dfrac{1}{2bc-\sqrt{bc(a+b+c)(b+c-a)}} f ( a , b , c ) = 2 b c − b c ( a + b + c ) ( b + c − a ) 1
別解1の別表現
f ( a , b , c ) = [ b c ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ] − 1 / 2 f(a,b,c)=[bc(b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)}]^{-1/2} f ( a , b , c ) = [ b c ( b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) ] − 1/2
別解2
f ( a , b , c ) = ( b + c − a ) a ( 2 b c + ( a + b + c ) ( b + c − a ) ) f(a,b,c)=(b+c-a)\sqrt{a}\left(2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)}\right) f ( a , b , c ) = ( b + c − a ) a ( 2 b c + ( a + b + c ) ( b + c − a ) )
別解2の別表現
f ( a , b , c ) = ( b + c − a ) [ a ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ] 1 / 2 f(a,b,c)=(b+c-a)[a(b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)}]^{1/2} f ( a , b , c ) = ( b + c − a ) [ a ( b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) ] 1/2
別解3
f ( a , b , c ) = a 1 − ( a + b + c ) ( b + c − a ) 4 b c f(a,b,c)=\dfrac{a}{1-\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}} f ( a , b , c ) = 1 − 4 b c ( a + b + c ) ( b + c − a ) a
別解4
f ( a , b , c ) = ( b + c − a ) ( 1 + ( a + b + c ) ( b + c − a ) 4 b c ) f(a,b,c)=(b+c-a)\left(1+\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}}\right) f ( a , b , c ) = ( b + c − a ) ( 1 + 4 b c ( a + b + c ) ( b + c − a ) )
X 3112
X 38 の等距離共役点
isotomic conjugate of X 38
f ( a , b , c ) = 1 a ( b 2 + c 2 ) f(a,b,c)=\dfrac{1}{a(b^2+c^2)} f ( a , b , c ) = a ( b 2 + c 2 ) 1
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b 2 + c 2 ) g(a,b,c)=a(b^2+c^2) g ( a , b , c ) = a ( b 2 + c 2 )
X 3241
重心の内心に関する鏡映
(ナーゲル点の重心に関する鏡映)
reflection of the centroid in the incenter
(reflection of the Nagel point in the centroid)
f ( a , b , c ) = 5 a − b − c f(a,b,c)=5a-b-c f ( a , b , c ) = 5 a − b − c
X 3146
(名称検討中)
(name pending)
f ( a , b , c ) = 5 a 4 − 2 a 2 ( b 2 + c 2 ) − 3 ( b 2 − c 2 ) 2 f(a,b,c)=5a^4-2a^2(b^2+c^2)-3(b^2-c^2)^2 f ( a , b , c ) = 5 a 4 − 2 a 2 ( b 2 + c 2 ) − 3 ( b 2 − c 2 ) 2
X 3157
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c ) ] f(a,b,c)=a^2(b^2+c^2-a^2)[a^3+a^2(b+c)-a(b^2+c^2)-(b-c)^2(b+c)] f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c )]
X 3164
(名称検討中)
(name pending)
f ( a , b , c ) = − a 6 ( b 2 + c 2 ) + a 4 ( 2 b 4 − b 2 c 2 + 2 c 4 ) − a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) + b 2 c 2 ( b 2 − c 2 ) 2 f(a,b,c)=-a^6(b^2+c^2)+a^4(2b^4-b^2c^2+2c^4)-a^2(b^2-c^2)^2(b^2+c^2)+b^2c^2(b^2-c^2)^2 f ( a , b , c ) = − a 6 ( b 2 + c 2 ) + a 4 ( 2 b 4 − b 2 c 2 + 2 c 4 ) − a 2 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) + b 2 c 2 ( b 2 − c 2 ) 2
X 3167
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) ( b 2 + c 2 − 3 a 2 ) f(a,b,c)=a^2(b^2+c^2-a^2)(b^2+c^2-3a^2) f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) ( b 2 + c 2 − 3 a 2 )
X 3260
X 74 の等距離共役点
isotomic conjugate of X 74
f ( a , b , c ) = 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 a 2 f(a,b,c)=\dfrac{2a^4-a^2(b^2+c^2)-(b^2-c^2)^2}{a^2} f ( a , b , c ) = a 2 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2
別解
f ( a , b , c ) = b 2 c 2 ( 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ) f(a,b,c)=b^2c^2(2a^4-a^2(b^2+c^2)-(b^2-c^2)^2) f ( a , b , c ) = b 2 c 2 ( 2 a 4 − a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 )
X 3271
元の三角形とアポロニウス点の外向三角形との配景の中心
perspector of the reference triangle and the Apollonius point
f ( a , b , c ) = a 2 ( b + c ) 2 b + c − a f(a,b,c)=\dfrac{a^2(b+c)^2}{b+c-a} f ( a , b , c ) = b + c − a a 2 ( b + c ) 2
別解
f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) ( b + c ) 2 f(a,b,c)=a^2(c+a-b)(a+b-c)(b+c)^2 f ( a , b , c ) = a 2 ( c + a − b ) ( a + b − c ) ( b + c ) 2
X 3272
正三角形J 1 J 2 J 3 の中心、
ただし、J 1 J 2 J 3 は元の三角形に内接し第一モーリー三角形にホモセティックな唯一の正三角形
center of the equilateral triangle J 1 J 2 J 3 ,
where J 1 J 2 J 3 is the unique equilateral triangle inscribed in the reference triangle and homothetic to the first Morley triangle
f ( a , b , c ) = a φ ( a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 2 a 2 b c ) f(a,b,c)=a\varphi\left(\dfrac{a^2(b^2+c^2)-(b^2-c^2)^2}{2a^2bc}\right) f ( a , b , c ) = a φ ( 2 a 2 b c a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
X 3276
第二モーリー三角形の中心
center of the second Morley triangle
f ( a , b , c ) = a ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\left(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\right) f ( a , b , c ) = a ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 / 2 ≤ x ≤ 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1/2 \le x \le 1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1/2 ≤ x ≤ 1/2
f ( a , b , c ) = a ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\biggl(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\biggr) f ( a , b , c ) = a ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 / 2 ≤ x ≤ 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1/2 \le x \le 1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1/2 ≤ x ≤ 1/2
X 3277
第三モーリー三角形の中心
center of the third Morley triangle
f ( a , b , c ) = a ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\left(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\right) f ( a , b , c ) = a ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le {-1/2} φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
f ( a , b , c ) = a ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\biggl(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\biggr) f ( a , b , c ) = a ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(u)=x \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le -1/2 φ ( u ) = x ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
X 3363
重心の垂足三角形の類似重心
symmedian point of the pedal triangle of the centroid
f ( a , b , c ) = 4 a 4 + 5 a 2 ( b 2 + c 2 ) − 5 b 4 + 14 b 2 c 2 − 5 c 4 f(a,b,c)=4a^4+5a^2(b^2+c^2)-5b^4+14b^2c^2-5c^4 f ( a , b , c ) = 4 a 4 + 5 a 2 ( b 2 + c 2 ) − 5 b 4 + 14 b 2 c 2 − 5 c 4
X 3596
第一オデーナル点
first Odehnal point
f ( a , b , c ) = b + c − a a 2 f(a,b,c)=\dfrac{b+c-a}{a^2} f ( a , b , c ) = a 2 b + c − a
別解
f ( a , b , c ) = b 2 c 2 ( b + c − a ) f(a,b,c)=b^2c^2(b+c-a) f ( a , b , c ) = b 2 c 2 ( b + c − a )
X 3605
第一モーリー三角形の中心の等角共役点
isogonal conjugate of the center of the first Morley triangle
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) f(a,b,c)=\dfrac{a}{\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)} f ( a , b , c ) = φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) a
ただし、
φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(x)=u \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
f ( a , b , c ) = a / ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\biggm/\biggl(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\biggr) f ( a , b , c ) = a / ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ 1 / 2 ≤ x ≤ 1 \varphi(x)=u \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; 1/2 \le x \le 1 φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ 1/2 ≤ x ≤ 1
X 3606
第二モーリー三角形の中心の等角共役点
isogonal conjugate of the center of the second Morley triangle
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) f(a,b,c)=\dfrac{a}{\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)} f ( a , b , c ) = φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) a
ただし、
φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1 / 2 ≤ x ≤ 1 / 2 \varphi(x)=u \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1/2 \le x \le 1/2 φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1/2 ≤ x ≤ 1/2
f ( a , b , c ) = a / ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\biggm/\biggl(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\biggr) f ( a , b , c ) = a / ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1 / 2 ≤ x ≤ 1 / 2 \varphi(x)=u \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1/2 \le x \le 1/2 φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1/2 ≤ x ≤ 1/2
X 3607
第三モーリー三角形の中心の等角共役点
isogonal conjugate of the center of the third Morley triangle
f ( a , b , c ) = a φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) f(a,b,c)=\dfrac{a}{\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)} f ( a , b , c ) = φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) a
ただし、
φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(x)=u \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le -1/2 φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
f ( a , b , c ) = a / ( φ ( b 2 + c 2 − a 2 2 b c ) + 2 φ ( c 2 + a 2 − b 2 2 c a ) φ ( a 2 + b 2 − c 2 2 a b ) ) f(a,b,c)=a\biggm/\biggl(\varphi\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+2\varphi\left(\dfrac{c^2+a^2-b^2}{2ca}\right)\varphi\left(\dfrac{a^2+b^2-c^2}{2ab}\right)\biggr) f ( a , b , c ) = a / ( φ ( 2 b c b 2 + c 2 − a 2 ) + 2 φ ( 2 c a c 2 + a 2 − b 2 ) φ ( 2 ab a 2 + b 2 − c 2 ) )
ただし、
φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1 / 2 \varphi(x)=u \iff 4x^3-3x=u \;\mathrel{\text{かつ}}\; -1 \le x \le -1/2 φ ( x ) = u ⟺ 4 x 3 − 3 x = u かつ − 1 ≤ x ≤ − 1/2
X 3626
ナーゲル点とシュピーカー心の中点
midpoint of the Nagel point and the Spieker center
f ( a , b , c ) = 3 b + 3 c − 2 a f(a,b,c)=3b+3c-2a f ( a , b , c ) = 3 b + 3 c − 2 a
X 3679
内心の重心に関する鏡映
(重心とナーゲル点の中点)
reflection of the incenter in the centroid
(midpoint of the centroid and the Nagel point)
f ( a , b , c ) = a − 2 ( b + c ) f(a,b,c)=a-2(b+c) f ( a , b , c ) = a − 2 ( b + c )
X 3718
X 34 の等距離共役点
isotomic conjugate of X 34
f ( a , b , c ) = ( b + c − a ) ( b 2 + c 2 − a 2 ) a f(a,b,c)=\dfrac{(b+c-a)(b^2+c^2-a^2)}{a} f ( a , b , c ) = a ( b + c − a ) ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = b c ( b + c − a ) ( b 2 + c 2 − a 2 ) f(a,b,c)=bc(b+c-a)(b^2+c^2-a^2) f ( a , b , c ) = b c ( b + c − a ) ( b 2 + c 2 − a 2 )
X 3828
重心とシュピーカー心の中点
midpoint of the centroid and the Spieker center
f ( a , b , c ) = 2 a + 5 b + 5 c f(a,b,c)=2a+5b+5c f ( a , b , c ) = 2 a + 5 b + 5 c
X 4998
フォイエルバッハ点の等距離共役点
isotomic conjugate of the Feuerbach point
f ( a , b , c ) = ( c − a ) 2 ( a − b ) 2 b + c − a f(a,b,c)=\dfrac{(c-a)^2(a-b)^2}{b+c-a} f ( a , b , c ) = b + c − a ( c − a ) 2 ( a − b ) 2
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = ( b − c ) 2 ( b + c − a ) g(a,b,c)=(b-c)^2(b+c-a) g ( a , b , c ) = ( b − c ) 2 ( b + c − a )
X 5480
垂心と類似重心の中点
midpoint of the orthocenter and the symmedian point
f ( a , b , c ) = 3 a 4 ( b 2 + c 2 ) − 2 a 2 ( b 2 − c 2 ) 2 − ( b 2 + c 2 ) ( b 2 − c 2 ) 2 f(a,b,c)=3a^4(b^2+c^2)-2a^2(b^2-c^2)^2-(b^2+c^2)(b^2-c^2)^2 f ( a , b , c ) = 3 a 4 ( b 2 + c 2 ) − 2 a 2 ( b 2 − c 2 ) 2 − ( b 2 + c 2 ) ( b 2 − c 2 ) 2
X 5542
内心とジェルゴンヌ点の中点
midpoint of the incenter and the Gergonne point
f ( a , b , c ) = 3 a 2 ( b + c ) − 2 a ( b − c ) 2 − ( b + c ) ( b − c ) 2 f(a,b,c)=3a^2(b+c)-2a(b-c)^2-(b+c)(b-c)^2 f ( a , b , c ) = 3 a 2 ( b + c ) − 2 a ( b − c ) 2 − ( b + c ) ( b − c ) 2
X 5570
(名称検討中)
(name pending)
f ( a , b , c ) = a [ a 5 ( b + c ) − a 4 ( b 2 + c 2 ) − 2 a 3 ( b + c ) ( b 2 − b c + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 2 − b c + c 2 ) + a ( b − c ) 2 ( b + c ) ( b 2 + c 2 ) − ( b − c ) 4 ( b + c ) 2 ] f(a,b,c)=a[a^5(b+c)-a^4(b^2+c^2)-2a^3(b+c)(b^2-bc+c^2)+2a^2(b^2+c^2)(b^2-bc+c^2)+a(b-c)^2(b+c)(b^2+c^2)-(b-c)^4(b+c)^2] f ( a , b , c ) = a [ a 5 ( b + c ) − a 4 ( b 2 + c 2 ) − 2 a 3 ( b + c ) ( b 2 − b c + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 2 − b c + c 2 ) + a ( b − c ) 2 ( b + c ) ( b 2 + c 2 ) − ( b − c ) 4 ( b + c ) 2 ]
X 5805
垂心とジェルゴンヌ点の中点
midpoint of the orthocenter and the Gergonne point
f ( a , b , c ) = a 6 − a 5 ( b + c ) − a 4 ( b 2 + c 2 ) + a 2 ( b − c ) 2 ( b 2 + c 2 ) + a ( b − c ) 2 ( b + c ) 3 − ( b − c ) 4 ( b + c ) 2 f(a,b,c)=a^6-a^5(b+c)-a^4(b^2+c^2)+a^2(b-c)^2(b^2+c^2)+a(b-c)^2(b+c)^3-(b-c)^4(b+c)^2 f ( a , b , c ) = a 6 − a 5 ( b + c ) − a 4 ( b 2 + c 2 ) + a 2 ( b − c ) 2 ( b 2 + c 2 ) + a ( b − c ) 2 ( b + c ) 3 − ( b − c ) 4 ( b + c ) 2
X 5901
内心と九点円の中心の中点
midpoint of the incenter and the nine-point center
f ( a , b , c ) = 2 a 4 − 2 a 3 ( b + c ) − a 2 ( 3 b 2 − 4 b c + 3 c 2 ) + 2 a ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2 f(a,b,c)=2a^4-2a^3(b+c)-a^2(3b^2-4bc+3c^2)+2a(b-c)^2(b+c)+(b-c)^2(b+c)^2 f ( a , b , c ) = 2 a 4 − 2 a 3 ( b + c ) − a 2 ( 3 b 2 − 4 b c + 3 c 2 ) + 2 a ( b − c ) 2 ( b + c ) + ( b − c ) 2 ( b + c ) 2
X 6063
X 55 の等距離共役点
isotomic conjugate of X 55
f ( a , b , c ) = 1 a 2 ( b + c − a ) f(a,b,c)=\dfrac{1}{a^2(b+c-a)} f ( a , b , c ) = a 2 ( b + c − a ) 1
別解
f ( a , b , c ) = b 2 c 2 ( c + a − b ) ( a + b − c ) f(a,b,c)=b^2c^2(c+a-b)(a+b-c) f ( a , b , c ) = b 2 c 2 ( c + a − b ) ( a + b − c )
X 6173
重心とジェルゴンヌ点の中点
midpoint of the centroid and the Gergonne point
f ( a , b , c ) = a 2 + a ( b + c ) − 2 ( b − c ) 2 f(a,b,c)=a^2+a(b+c)-2(b-c)^2 f ( a , b , c ) = a 2 + a ( b + c ) − 2 ( b − c ) 2
X 6381
(名称検討中)
(name pending)
f ( a , b , c ) = b c ( a ( b + c ) − 2 b c ) f(a,b,c)=bc(a(b+c)-2bc) f ( a , b , c ) = b c ( a ( b + c ) − 2 b c )
X 6384
X 43 の等距離共役点
isotomic conjugate of X 43
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( 1 b + 1 c ) − 1 g(a,b,c)=a\left(\dfrac1b+\dfrac1c\right)-1 g ( a , b , c ) = a ( b 1 + c 1 ) − 1
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( a b + a c − b c ) g(a,b,c)=a(ab+ac-bc) g ( a , b , c ) = a ( ab + a c − b c )
X 7001
元の三角形と合同二等辺化線点の外向三角形との配景の中心
perspector of the reference triangle and the extraversion triangle of the congruent isoscelizers point
f ( a , b , c ) = a ( 1 + 2 Δ a b + 1 + 2 Δ a c − 1 + 2 Δ a b − 1 ) f(a,b,c)=a\left(\sqrt{1+\dfrac{2\Delta}{ab}}+\sqrt{1+\dfrac{2\Delta}{ac}}-\sqrt{1+\dfrac{2\Delta}{ab}}-1\right) f ( a , b , c ) = a ( 1 + ab 2Δ + 1 + a c 2Δ − 1 + ab 2Δ − 1 ) ただし、Δ \Delta Δ は元の三角形の面積
別解1
f ( a , b , c ) = a ( 2 b c ( a + b + c ) ( b + c − a ) + ( a + b + c ) ( b + c − a ) ) f(a,b,c)=a(2\sqrt{bc(a+b+c)(b+c-a)}+(a+b+c)(b+c-a)) f ( a , b , c ) = a ( 2 b c ( a + b + c ) ( b + c − a ) + ( a + b + c ) ( b + c − a ))
別解2
f ( a , b , c ) = g ( a , b , c ) ( 1 + g ( a , b , c ) ) f(a,b,c)=g(a,b,c)(1+g(a,b,c)) f ( a , b , c ) = g ( a , b , c ) ( 1 + g ( a , b , c ))
ただし、
g ( a , b , c ) = ( a + b + c ) ( b + c − a ) 4 b c g(a,b,c)=\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}} g ( a , b , c ) = 4 b c ( a + b + c ) ( b + c − a )
別解3
f ( a , b , c ) = a 1 − 2 Δ a b + 1 − 2 Δ a c − 1 − 2 Δ b c + 1 f(a,b,c)=\dfrac{a}{\sqrt{1-\dfrac{2\Delta}{ab}}+\sqrt{1-\dfrac{2\Delta}{ac}}-\sqrt{1-\dfrac{2\Delta}{bc}}+1} f ( a , b , c ) = 1 − ab 2Δ + 1 − a c 2Δ − 1 − b c 2Δ + 1 a ただし、Δ \Delta Δ は元の三角形の面積
X 7002
元の三角形と第一安島マルファッチ点の外向三角形との配景の中心
perspector of the reference triangle and the extraversion triangle of the first Ajima-Malfatti point
f ( a , b , c ) = 1 ( 2 b c + ( c + a − b ) ( a + b − c ) ) 2 f(a,b,c)=\dfrac{1}{\left(2\sqrt{bc}+\sqrt{(c+a-b)(a+b-c)}\right)^2} f ( a , b , c ) = ( 2 b c + ( c + a − b ) ( a + b − c ) ) 2 1
別表現
f ( a , b , c ) = 1 a 2 − b 2 − c 2 + 6 b c + 4 b c ( c + a − b ) ( a + b − c ) f(a,b,c)=\dfrac{1}{a^2-b^2-c^2+6bc+4\sqrt{bc(c+a-b)(a+b-c)}} f ( a , b , c ) = a 2 − b 2 − c 2 + 6 b c + 4 b c ( c + a − b ) ( a + b − c ) 1
別解1
f ( a , b , c ) = ( 2 b c − ( c + a − b ) ( a + b − c ) ) 2 ( b + c − a ) 2 f(a,b,c)=\dfrac{\left(2\sqrt{bc}-\sqrt{(c+a-b)(a+b-c)}\right)^2}{(b+c-a)^2} f ( a , b , c ) = ( b + c − a ) 2 ( 2 b c − ( c + a − b ) ( a + b − c ) ) 2
別解1の別表現
f ( a , b , c ) = a 2 − b 2 − c 2 + 6 b c − 4 b c ( c + a − b ) ( a + b − c ) ( b + c − a ) 2 f(a,b,c)=\dfrac{a^2-b^2-c^2+6bc-4\sqrt{bc(c+a-b)(a+b-c)}}{(b+c-a)^2} f ( a , b , c ) = ( b + c − a ) 2 a 2 − b 2 − c 2 + 6 b c − 4 b c ( c + a − b ) ( a + b − c )
別解2
f ( a , b , c ) = a ( 1 + ( c + a − b ) ( a + b − c ) 4 b c ) 2 f(a,b,c)=\dfrac{a}{\left(1+\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}}\right)^2} f ( a , b , c ) = ( 1 + 4 b c ( c + a − b ) ( a + b − c ) ) 2 a
X 7022
元の三角形とイフ・マルファッチ点の外向三角形との配景の中心
perspector of the reference triangle and the extraversion triangle of the Yff-Malfatti point
f ( a , b , c ) = 1 ( 2 b c − ( c + a − b ) ( a + b − c ) ) 2 f(a,b,c)=\dfrac{1}{\left(2\sqrt{bc}-\sqrt{(c+a-b)(a+b-c)}\right)^2} f ( a , b , c ) = ( 2 b c − ( c + a − b ) ( a + b − c ) ) 2 1
別表現
f ( a , b , c ) = 1 a 2 − b 2 − c 2 + 6 b c − 4 b c ( c + a − b ) ( a + b − c ) f(a,b,c)=\dfrac{1}{a^2-b^2-c^2+6bc-4\sqrt{bc(c+a-b)(a+b-c)}} f ( a , b , c ) = a 2 − b 2 − c 2 + 6 b c − 4 b c ( c + a − b ) ( a + b − c ) 1
別解1
f ( a , b , c ) = ( 2 b c + ( c + a − b ) ( a + b − c ) ) 2 ( b + c − a ) 2 f(a,b,c)=\dfrac{\left(2\sqrt{bc}+\sqrt{(c+a-b)(a+b-c)}\right)^2}{(b+c-a)^2} f ( a , b , c ) = ( b + c − a ) 2 ( 2 b c + ( c + a − b ) ( a + b − c ) ) 2
別解1の別表現
f ( a , b , c ) = a 2 − b 2 − c 2 + 6 b c + 4 b c ( c + a − b ) ( a + b − c ) ( b + c − a ) 2 f(a,b,c)=\dfrac{a^2-b^2-c^2+6bc+4\sqrt{bc(c+a-b)(a+b-c)}}{(b+c-a)^2} f ( a , b , c ) = ( b + c − a ) 2 a 2 − b 2 − c 2 + 6 b c + 4 b c ( c + a − b ) ( a + b − c )
別解2
f ( a , b , c ) = a ( 1 − ( c + a − b ) ( a + b − c ) 4 b c ) 2 f(a,b,c)=\dfrac{a}{\left(1-\sqrt{\dfrac{(c+a-b)(a+b-c)}{4bc}}\right)^2} f ( a , b , c ) = ( 1 − 4 b c ( c + a − b ) ( a + b − c ) ) 2 a
X 7182
X 33 の等距離共役点
(元の三角形とX 3718 の外向三角形との配景の中心)
isotomic conjugate of X 33
(perspector of the reference triangle and the extraversion triangle of X 3718 )
f ( a , b , c ) = b 2 + c 2 − a 2 a ( b + c − a ) f(a,b,c)=\dfrac{b^2+c^2-a^2}{a(b+c-a)} f ( a , b , c ) = a ( b + c − a ) b 2 + c 2 − a 2
別解
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) g ( b , c , a ) g ( c , a , b ) f(a,b,c)=(b^2+c^2-a^2)g(b,c,a)g(c,a,b) f ( a , b , c ) = ( b 2 + c 2 − a 2 ) g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b + c − a ) g(a,b,c)=a(b+c-a) g ( a , b , c ) = a ( b + c − a )
X 7991
(名称検討中)
(name pending)
f ( a , b , c ) = a ( a 3 + 3 a 2 ( b + c ) − a ( b 2 + 6 b c + c 2 ) − 3 ( b + c ) ( b − c ) 2 ) f(a,b,c)=a(a^3+3a^2(b+c)-a(b^2+6bc+c^2)-3(b+c)(b-c)^2) f ( a , b , c ) = a ( a 3 + 3 a 2 ( b + c ) − a ( b 2 + 6 b c + c 2 ) − 3 ( b + c ) ( b − c ) 2 )
X 8143
内心三角形の外心
circumcenter of the incentral triangle
f ( a , b , c ) = a ( a 5 ( b + c ) + a 4 ( b 2 + c 2 ) − a 3 ( b + c ) ( 2 b 2 + b c + 2 c 2 ) − 2 a 2 ( b 4 + b 3 c + b 2 c 2 + b c 3 + c 4 ) + a ( b − c ) 2 ( b + c ) ( b 2 + 3 b c + c 2 ) + ( b − c ) 2 ( b + c ) 4 ) f(a,b,c)=a(a^5(b+c)+a^4(b^2+c^2)-a^3(b+c)(2b^2+bc+2c^2)-2a^2(b^4+b^3c+b^2c^2+bc^3+c^4)+a(b-c)^2(b+c)(b^2+3bc+c^2)+(b-c)^2(b+c)^4) f ( a , b , c ) = a ( a 5 ( b + c ) + a 4 ( b 2 + c 2 ) − a 3 ( b + c ) ( 2 b 2 + b c + 2 c 2 ) − 2 a 2 ( b 4 + b 3 c + b 2 c 2 + b c 3 + c 4 ) + a ( b − c ) 2 ( b + c ) ( b 2 + 3 b c + c 2 ) + ( b − c ) 2 ( b + c ) 4 )
X 8242
ハトソン内接三角形と第二外接円弧中点三角形の相似中心
homothetic center of the Hutson-intouch triangle and the second tangential-midarc triangle
f ( a , b , c ) = a ( 4 a b c − ( a + b + c ) b c ( c + a − b ) ( a + b − c ) ) f(a,b,c)=a\left(4abc-(a+b+c)\sqrt{bc(c+a-b)(a+b-c)}\right) f ( a , b , c ) = a ( 4 ab c − ( a + b + c ) b c ( c + a − b ) ( a + b − c ) )
別解
f ( a , b , c ) = 4 a − ( a + b + c ) ( c + a − b ) ( a + b − c ) b c f(a,b,c)=4a-(a+b+c)\sqrt{\dfrac{(c+a-b)(a+b-c)}{bc}} f ( a , b , c ) = 4 a − ( a + b + c ) b c ( c + a − b ) ( a + b − c )
X 9233
三線七乗点
(P 13 とU 13 の重心座標積)
trilinear seventh power point
(baricentric product of P 13 and U 13 )
f ( a , b , c ) = a 8 f(a,b,c)=a^8 f ( a , b , c ) = a 8
X 9241
(名称検討中)
(name pending)
f ( a , b , c ) = 7 a 4 − 16 a 2 ( b 2 + c 2 ) + b 4 + 14 b 2 c 2 + c 4 f(a,b,c)=7a^4-16a^2(b^2+c^2)+b^4+14b^2c^2+c^4 f ( a , b , c ) = 7 a 4 − 16 a 2 ( b 2 + c 2 ) + b 4 + 14 b 2 c 2 + c 4
X 9742
(名称検討中)
(name pending)
f ( a , b , c ) = 3 a 8 + 12 ( b 2 + c 2 ) a 6 − 2 ( 13 b 4 + 16 b 2 c 2 + 13 c 4 ) a 4 + 4 ( b 2 + c 2 ) ( 5 b 4 − 4 b 2 c 2 + 5 c 4 ) a 2 − ( b 2 − c 2 ) 2 ( 9 ( b 2 + c 2 ) 2 − 16 b 2 c 2 ) f(a,b,c)=3a^8+12(b^2+c^2)a^6-2(13b^4+16b^2c^2+13c^4)a^4+4(b^2+c^2)(5b^4-4b^2c^2+5c^4)a^2-(b^2-c^2)^2(9(b^2+c^2)^2-16b^2c^2) f ( a , b , c ) = 3 a 8 + 12 ( b 2 + c 2 ) a 6 − 2 ( 13 b 4 + 16 b 2 c 2 + 13 c 4 ) a 4 + 4 ( b 2 + c 2 ) ( 5 b 4 − 4 b 2 c 2 + 5 c 4 ) a 2 − ( b 2 − c 2 ) 2 ( 9 ( b 2 + c 2 ) 2 − 16 b 2 c 2 )
X 12815
第一ナポレオン点と第二ナポレオン点の中点
midpoint of the first and second Napoleon points
f ( a , b , c ) = 4 a 4 − 6 a 2 ( b 2 + c 2 ) + 5 ( b 2 − c 2 ) 2 f(a,b,c)=4a^4-6a^2(b^2+c^2)+5(b^2-c^2)^2 f ( a , b , c ) = 4 a 4 − 6 a 2 ( b 2 + c 2 ) + 5 ( b 2 − c 2 ) 2
X 14615
X 64 の等距離共役点
isotomic conjugate of X 64
f ( a , b , c ) = − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 a 2 f(a,b,c)=\dfrac{-3a^4+2a^2(b^2+c^2)+(b^2-c^2)^2}{a^2} f ( a , b , c ) = a 2 − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2
別解
f ( a , b , c ) = b 2 c 2 [ − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ] f(a,b,c)=b^2c^2[-3a^4+2a^2(b^2+c^2)+(b^2-c^2)^2] f ( a , b , c ) = b 2 c 2 [ − 3 a 4 + 2 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ]
X 17834
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 [ a 8 − 2 a 4 ( 3 b 4 + 2 b 2 c 2 + 3 c 4 ) + 8 a 2 ( b 6 + c 6 ) − ( 3 b 4 + 2 b 2 c 2 + 3 c 4 ) ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2[a^8-2a^4(3b^4+2b^2c^2+3c^4)+8a^2(b^6+c^6)-(3b^4+2b^2c^2+3c^4)(b^2-c^2)^2] f ( a , b , c ) = a 2 [ a 8 − 2 a 4 ( 3 b 4 + 2 b 2 c 2 + 3 c 4 ) + 8 a 2 ( b 6 + c 6 ) − ( 3 b 4 + 2 b 2 c 2 + 3 c 4 ) ( b 2 − c 2 ) 2 ]
X 18018
エクセター点の等距離共役点
isotomic conjugate of the Exeter point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 ) g(a,b,c)=a^2(b^4+c^4-a^4) g ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 )
別解
f ( a , b , c ) = ( c 4 + a 4 − b 4 ) ( a 4 + b 4 − c 4 ) a 2 f(a,b,c)=\dfrac{(c^4+a^4-b^4)(a^4+b^4-c^4)}{a^2} f ( a , b , c ) = a 2 ( c 4 + a 4 − b 4 ) ( a 4 + b 4 − c 4 )
X 18019
遥遠点(仮称)の等距離共役点
isotomic conjugate of the far-out point
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 − b 2 c 2 ) g(a,b,c)=a^2(b^4+c^4-a^4-b^2c^2) g ( a , b , c ) = a 2 ( b 4 + c 4 − a 4 − b 2 c 2 )
別解
f ( a , b , c ) = ( c 4 + a 4 − b 4 − c 2 a 2 ) ( a 4 + b 4 − c 4 − a 2 b 2 ) a 2 f(a,b,c)=\dfrac{(c^4+a^4-b^4-c^2a^2)(a^4+b^4-c^4-a^2b^2)}{a^2} f ( a , b , c ) = a 2 ( c 4 + a 4 − b 4 − c 2 a 2 ) ( a 4 + b 4 − c 4 − a 2 b 2 )
X 20336
X 28 の等距離共役点
isotomic conjugate of X 28
f ( a , b , c ) = ( b + c ) ( b 2 + c 2 − a 2 ) a f(a,b,c)=\dfrac{(b+c)(b^2+c^2-a^2)}{a} f ( a , b , c ) = a ( b + c ) ( b 2 + c 2 − a 2 )
別解
f ( a , b , c ) = b c ( b + c ) ( b 2 + c 2 − a 2 ) f(a,b,c)=bc(b+c)(b^2+c^2-a^2) f ( a , b , c ) = b c ( b + c ) ( b 2 + c 2 − a 2 )
X 20563
X 24 の等距離共役点
isotomic conjugate of X 24
f ( a , b , c ) = ( b 2 + c 2 − a 2 ) g ( b , c , a ) g ( c , a , b ) f(a,b,c)=(b^2+c^2-a^2)g(b,c,a)g(c,a,b) f ( a , b , c ) = ( b 2 + c 2 − a 2 ) g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] g(a,b,c)=a^2[a^4-2a^2(b^2+c^2)+b^4+c^4] g ( a , b , c ) = a 2 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ]
別表現
f ( a , b , c ) = b 2 c 2 ( b 2 + c 2 − a 2 ) [ a 4 − 2 a 2 b 2 + ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 c 2 + ( b 2 − c 2 ) 2 ] f(a,b,c)=b^2c^2(b^2+c^2-a^2)[a^4-2a^2b^2+(b^2-c^2)^2][a^4-2a^2c^2+(b^2-c^2)^2] f ( a , b , c ) = b 2 c 2 ( b 2 + c 2 − a 2 ) [ a 4 − 2 a 2 b 2 + ( b 2 − c 2 ) 2 ] [ a 4 − 2 a 2 c 2 + ( b 2 − c 2 ) 2 ]
X 20564
X 26 の等距離共役点
isotomic conjugate of X 26
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 [ a 8 − 2 a 6 ( b 2 + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + c 4 ) ] g(a,b,c)=a^2[a^8-2a^6(b^2+c^2)+2a^2(b^2+c^2)(b^4-b^2c^2+c^4)-(b^2-c^2)^2(b^4+c^4)] g ( a , b , c ) = a 2 [ a 8 − 2 a 6 ( b 2 + c 2 ) + 2 a 2 ( b 2 + c 2 ) ( b 4 − b 2 c 2 + c 4 ) − ( b 2 − c 2 ) 2 ( b 4 + c 4 )]
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 [ b 4 ( c 2 + a 2 − b 2 ) 2 + c 4 ( a 2 + b 2 − c 2 ) 2 − a 4 ( b 2 + c 2 − a 2 ) 2 + 2 a 2 b 2 c 2 ( b 2 + c 2 − a 2 ) ) ] g(a,b,c)=a^2[b^4(c^2+a^2-b^2)^2+c^4(a^2+b^2-c^2)^2-a^4(b^2+c^2-a^2)^2+2a^2b^2c^2(b^2+c^2-a^2))] g ( a , b , c ) = a 2 [ b 4 ( c 2 + a 2 − b 2 ) 2 + c 4 ( a 2 + b 2 − c 2 ) 2 − a 4 ( b 2 + c 2 − a 2 ) 2 + 2 a 2 b 2 c 2 ( b 2 + c 2 − a 2 ))]
X 20565
X 35 の等距離共役点
isotomic conjugate of X 35
f ( a , b , c ) = 1 a 2 ( b 2 + c 2 − a 2 + b c ) f(a,b,c)=\dfrac{1}{a^2(b^2+c^2-a^2+bc)} f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c ) 1
別解
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c ) g(a,b,c)=a^2(b^2+c^2-a^2+bc) g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 + b c )
X 20566
X 36 の等距離共役点
isotomic conjugate of X 36
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − b c ) g(a,b,c)=a^2(b^2+c^2-a^2-bc) g ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 − b c )
X 20567
X 41 の等距離共役点
isotomic conjugate of X 41
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 3 ( b + c − a ) g(a,b,c)=a^3(b+c-a) g ( a , b , c ) = a 3 ( b + c − a )
X 20568
X 44 の等距離共役点
isotomic conjugate of X 44
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( b + c − 2 a ) g(a,b,c)=a(b+c-2a) g ( a , b , c ) = a ( b + c − 2 a )
X 20569
X 45 の等距離共役点
isotomic conjugate of X 45
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a ( 2 b + 2 c − a ) g(a,b,c)=a(2b+2c-a) g ( a , b , c ) = a ( 2 b + 2 c − a )
X 20570
X 46 の等距離共役点
isotomic conjugate of X 46
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a [ b ( c 2 + a 2 − b 2 ) + c ( a 2 + b 2 − c 2 ) − a ( b 2 + c 2 − a 2 ) ] g(a,b,c)=a[b(c^2+a^2-b^2)+c(a^2+b^2-c^2)-a(b^2+c^2-a^2)] g ( a , b , c ) = a [ b ( c 2 + a 2 − b 2 ) + c ( a 2 + b 2 − c 2 ) − a ( b 2 + c 2 − a 2 )]
別表現
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c ) ] g(a,b,c)=a[a^3+a^2(b+c)-a(b^2+c^2)-(b-c)^2(b+c)] g ( a , b , c ) = a [ a 3 + a 2 ( b + c ) − a ( b 2 + c 2 ) − ( b − c ) 2 ( b + c )]
X 20571
X 47 の等距離共役点
isotomic conjugate of X 47
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 3 [ ( b 2 + c 2 − a 2 ) 2 − 2 b 2 c 2 ] g(a,b,c)=a^3[(b^2+c^2-a^2)^2-2b^2c^2] g ( a , b , c ) = a 3 [( b 2 + c 2 − a 2 ) 2 − 2 b 2 c 2 ]
別表現
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 3 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ] g(a,b,c)=a^3[a^4-2a^2(b^2+c^2)+b^4+c^4] g ( a , b , c ) = a 3 [ a 4 − 2 a 2 ( b 2 + c 2 ) + b 4 + c 4 ]
X 20572
X 49 の等距離共役点
isotomic conjugate of X 49
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 4 ( b 2 + c 2 − a 2 ) [ ( b 2 + c 2 − a 2 ) 2 − 3 b 2 c 2 ] g(a,b,c)=a^4(b^2+c^2-a^2)[(b^2+c^2-a^2)^2-3b^2c^2] g ( a , b , c ) = a 4 ( b 2 + c 2 − a 2 ) [( b 2 + c 2 − a 2 ) 2 − 3 b 2 c 2 ]
X 20573
X 50 の等距離共役点
isotomic conjugate of X 50
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = a 4 [ ( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ] g(a,b,c)=a^4[(b^2+c^2-a^2)^2-b^2c^2] g ( a , b , c ) = a 4 [( b 2 + c 2 − a 2 ) 2 − b 2 c 2 ]
X 23719
外心のチェバ三角形の外心
circumcenter of the Cevian triangle of the circumcenter
f ( a , b , c ) = a 2 ( a 18 ( b 2 + c 2 ) − 2 a 16 ( 3 b 4 + 5 b 2 c 2 + 3 c 4 ) + a 14 ( b 2 + c 2 ) ( 13 b 4 + 17 b 2 c 2 + 13 c 4 ) − a 12 ( 7 b 8 + 39 b 6 c 2 + 54 b 4 c 4 + 39 b 2 c 6 + 7 c 8 ) − 3 a 10 ( b 2 + c 2 ) ( 7 b 8 − 17 b 6 c 2 + 4 b 4 c 4 − 17 b 2 c 6 + 7 c 8 ) + a 8 ( b 2 − c 2 ) 2 ( 49 b 8 + 57 b 6 c 2 + 66 b 4 c 4 + 57 b 2 c 6 + 49 c 8 ) − 7 a 6 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ( 7 b 8 − 3 b 6 c 2 + 8 b 4 c 4 − 3 b 2 c 6 + 7 c 8 ) + a 4 ( b 2 − c 2 ) 4 ( 27 b 8 + 43 b 6 c 2 + 46 b 4 c 4 + 43 b 2 c 6 + 27 c 8 ) − a 2 ( b 2 − c 2 ) 6 ( b 2 + c 2 ) ( 8 b 4 + 11 b 2 c 2 + 8 c 4 ) + ( b 2 − c 2 ) 6 ( b 8 + b 6 c 2 − 2 b 4 c 4 + b 2 c 6 + c 8 ) ) f(a,b,c)=a^2(a^{18}(b^2+c^2)-2a^{16}(3b^4+5b^2c^2+3c^4)+a^{14}(b^2+c^2)(13b^4+17b^2c^2+13c^4)-a^{12}(7b^8+39b^6c^2+54b^4c^4+39b^2c^6+7c^8)-3a^{10}(b^2+c^2)(7b^8-17b^6c^2+4b^4c^4-17b^2c^6+7c^8)+a^8(b^2-c^2)^2(49b^8+57b^6c^2+66b^4c^4+57b^2c^6+49c^8)-7a^6(b^2-c^2)^2(b^2+c^2)(7b^8-3b^6c^2+8b^4c^4-3b^2c^6+7c^8)+a^4(b^2-c^2)^4(27b^8+43b^6c^2+46b^4c^4+43b^2c^6+27c^8)-a^2(b^2-c^2)^6(b^2+c^2)(8b^4+11b^2c^2+8c^4)+(b^2-c^2)^6(b^8+b^6c^2-2b^4c^4+b^2c^6+c^8)) f ( a , b , c ) = a 2 ( a 18 ( b 2 + c 2 ) − 2 a 16 ( 3 b 4 + 5 b 2 c 2 + 3 c 4 ) + a 14 ( b 2 + c 2 ) ( 13 b 4 + 17 b 2 c 2 + 13 c 4 ) − a 12 ( 7 b 8 + 39 b 6 c 2 + 54 b 4 c 4 + 39 b 2 c 6 + 7 c 8 ) − 3 a 10 ( b 2 + c 2 ) ( 7 b 8 − 17 b 6 c 2 + 4 b 4 c 4 − 17 b 2 c 6 + 7 c 8 ) + a 8 ( b 2 − c 2 ) 2 ( 49 b 8 + 57 b 6 c 2 + 66 b 4 c 4 + 57 b 2 c 6 + 49 c 8 ) − 7 a 6 ( b 2 − c 2 ) 2 ( b 2 + c 2 ) ( 7 b 8 − 3 b 6 c 2 + 8 b 4 c 4 − 3 b 2 c 6 + 7 c 8 ) + a 4 ( b 2 − c 2 ) 4 ( 27 b 8 + 43 b 6 c 2 + 46 b 4 c 4 + 43 b 2 c 6 + 27 c 8 ) − a 2 ( b 2 − c 2 ) 6 ( b 2 + c 2 ) ( 8 b 4 + 11 b 2 c 2 + 8 c 4 ) + ( b 2 − c 2 ) 6 ( b 8 + b 6 c 2 − 2 b 4 c 4 + b 2 c 6 + c 8 ))
X 29959
(名称検討中)
(name pending)
f ( a , b , c ) = a 2 ( b 2 + c 2 ) ( a 4 − b 4 + 4 b 2 c 2 − c 4 ) f(a,b,c)=a^2(b^2+c^2)(a^4-b^4+4b^2c^2-c^4) f ( a , b , c ) = a 2 ( b 2 + c 2 ) ( a 4 − b 4 + 4 b 2 c 2 − c 4 )
X 30806
(名称検討中)
(name pending)
f ( a , b , c ) = b c [ 2 a 2 − a ( b + c ) − ( b − c ) 2 ] f(a,b,c)=bc[2a^2-a(b+c)-(b-c)^2] f ( a , b , c ) = b c [ 2 a 2 − a ( b + c ) − ( b − c ) 2 ]
X 31495
マルファッティ円の曲率重心
(マルファッティ三角形のジェルゴンヌ点)
centroid of curvatures of the Malfatti circles
(Gergonne point of the Malfatti triangle)
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) + a f(a,b,c)=\dfrac{g(b,c,a)g(c,a,b)}{g(a,b,c)}+a f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + a
ただし、
g ( a , b , c ) = 2 b c + ( a + b + c ) ( b + c − a ) g(a,b,c)=2\sqrt{bc}+\sqrt{(a+b+c)(b+c-a)} g ( a , b , c ) = 2 b c + ( a + b + c ) ( b + c − a )
別表現1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) + a f(a,b,c)=\sqrt{\dfrac{g(b,c,a)g(c,a,b)}{g(a,b,c)}}+a f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + a
ただし、
g ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a ) g(a,b,c)=b^2+c^2-a^2+6bc+4\sqrt{bc(a+b+c)(b+c-a)} g ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c + 4 b c ( a + b + c ) ( b + c − a )
別表現2
f ( a , b , c ) = a ( 2 g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) + 1 ) f(a,b,c)=a\left(\dfrac{2g(b,c,a)g(c,a,b)}{g(a,b,c)}+1\right) f ( a , b , c ) = a ( g ( a , b , c ) 2 g ( b , c , a ) g ( c , a , b ) + 1 )
ただし、
g ( a , b , c ) = 1 + ( a + b + c ) ( b + c − a ) 4 b c g(a,b,c)=1+\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}} g ( a , b , c ) = 1 + 4 b c ( a + b + c ) ( b + c − a )
X 32038
(名称検討中)
(name pending)
f ( a , b , c ) = ( a − b ) ( a − c ) ( a + b − c ) ( a − b + c ) ( a b + 2 a c + b 2 + b c ) ( 2 a b + a c + b c + c 2 ) f(a,b,c)=(a-b)(a-c)(a+b-c)(a-b+c)(ab+2ac+b^2+bc)(2ab+ac+bc+c^2) f ( a , b , c ) = ( a − b ) ( a − c ) ( a + b − c ) ( a − b + c ) ( ab + 2 a c + b 2 + b c ) ( 2 ab + a c + b c + c 2 )
X 32039
(名称検討中)
(name pending)
f ( a , b , c ) = ( a − b ) ( a − c ) ( a b − a c − b c ) 2 ( a b − a c + b c ) 2 f(a,b,c)=(a-b)(a-c)(ab-ac-bc)^2(ab-ac+bc)^2 f ( a , b , c ) = ( a − b ) ( a − c ) ( ab − a c − b c ) 2 ( ab − a c + b c ) 2
X 32040
(名称検討中)
(name pending)
f ( a , b , c ) = ( a − b ) ( a − c ) ( 3 a 2 + 2 a b − 2 a c + 3 b 2 − 2 b c − c 2 ) ( 3 a 2 − 2 a b + 2 a c − b 2 − 2 b c + 3 c 2 ) f(a,b,c)=(a-b)(a-c)(3a^2+2ab-2ac+3b^2-2bc-c^2)(3a^2-2ab+2ac-b^2-2bc+3c^2) f ( a , b , c ) = ( a − b ) ( a − c ) ( 3 a 2 + 2 ab − 2 a c + 3 b 2 − 2 b c − c 2 ) ( 3 a 2 − 2 ab + 2 a c − b 2 − 2 b c + 3 c 2 )
X 32041
(名称検討中)
(name pending)
f ( a , b , c ) = ( a − b ) ( a − c ) ( a b + 2 a c − b 2 + b c ) ( 2 a b + a c + b c − c 2 ) f(a,b,c)=(a-b)(a-c)(ab+2ac-b^2+bc)(2ab+ac+bc-c^2) f ( a , b , c ) = ( a − b ) ( a − c ) ( ab + 2 a c − b 2 + b c ) ( 2 ab + a c + b c − c 2 )
X 32042
(名称検討中)
(name pending)
f ( a , b , c ) = ( a − b ) ( a − c ) ( 2 a + 2 b + c ) ( 2 a + b + 2 c ) f(a,b,c)=(a-b)(a-c)(2a+2b+c)(2a+b+2c) f ( a , b , c ) = ( a − b ) ( a − c ) ( 2 a + 2 b + c ) ( 2 a + b + 2 c )
X 32078
外心のチェバ三角形の重心
centroid of the Cevian triangle of the circumcenter
f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ 2 a 4 − 3 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ] f(a,b,c)=a^2(b^2+c^2-a^2)[2a^4-3a^2(b^2+c^2)+(b^2-c^2)^2][a^2(b^2+c^2)-(b^2-c^2)^2] f ( a , b , c ) = a 2 ( b 2 + c 2 − a 2 ) [ 2 a 4 − 3 a 2 ( b 2 + c 2 ) + ( b 2 − c 2 ) 2 ] [ a 2 ( b 2 + c 2 ) − ( b 2 − c 2 ) 2 ]
X 32167
内心のチェバ三角形の九点円の中心
nine-point center of the Cevian triangle of the incenter
f ( a , b , c ) = a [ 3 a 5 ( b + c ) + a 4 ( b 2 + 4 b c + c 2 ) − a 3 ( b + c ) ( 6 b 2 − b c + 6 c 2 ) − 2 a 2 ( b 4 + 3 b 3 c + 3 b 2 c 2 + 3 b c 3 + c 4 ) + a ( b − c ) 2 ( b + c ) ( 3 b 2 + 5 b c + 3 c 2 ) + ( b − c ) 2 ( b + c ) 4 ] f(a,b,c)=a[3a^5(b+c)+a^4(b^2+4bc+c^2)-a^3(b+c)(6b^2-bc+6c^2)-2a^2(b^4+3b^3c+3b^2c^2+3bc^3+c^4)+a(b-c)^2(b+c)(3b^2+5bc+3c^2)+(b-c)^2(b+c)^4] f ( a , b , c ) = a [ 3 a 5 ( b + c ) + a 4 ( b 2 + 4 b c + c 2 ) − a 3 ( b + c ) ( 6 b 2 − b c + 6 c 2 ) − 2 a 2 ( b 4 + 3 b 3 c + 3 b 2 c 2 + 3 b c 3 + c 4 ) + a ( b − c ) 2 ( b + c ) ( 3 b 2 + 5 b c + 3 c 2 ) + ( b − c ) 2 ( b + c ) 4 ]
X 40297
冪曲線の内心での接線上の無限遠点
infinite point on the line tangent to the power curve at the incenter
f ( a , b , c ) = a b ( log a − log b ) + a c ( log a − log c ) f(a,b,c)=ab(\log a - \log b) + ac(\log a - \log c) f ( a , b , c ) = ab ( log a − log b ) + a c ( log a − log c )
X 40298
冪曲線の重心での接線上の無限遠点
infinite point on the line tangent to the power curve at the centroid
f ( a , b , c ) = 2 log a − log b − log c f(a,b,c)=2\log a - \log b - \log c f ( a , b , c ) = 2 log a − log b − log c
X 40299
冪曲線の類似重心での接線上の無限遠点
infinite point on the line tangent to the power curve at the symmedian point
f ( a , b , c ) = a 2 b 2 ( log a − log b ) + a 2 c 2 ( log a − log c ) f(a,b,c)=a^2b^2(\log a - \log b) + a^2c^2(\log a - \log c) f ( a , b , c ) = a 2 b 2 ( log a − log b ) + a 2 c 2 ( log a − log c )
X 40300
冪曲線の内心での接線の三線極点
trilinear pole of the line tangent to the power curve at the incenter
f ( a , b , c ) = a ( log a − log b ) ( log a − log c ) f(a,b,c)=a(\log a - \log b)(\log a - \log c) f ( a , b , c ) = a ( log a − log b ) ( log a − log c )
X 40301
冪曲線の重心での接線の三線極点
trilinear pole of the line tangent to the power curve at the centroid
f ( a , b , c ) = ( log a − log b ) ( log a − log c ) f(a,b,c)=(\log a - \log b)(\log a - \log c) f ( a , b , c ) = ( log a − log b ) ( log a − log c )
X 40302
冪曲線の類似重心での接線の三線極点
trilinear pole of the line tangent to the power curve at the symmedian point
f ( a , b , c ) = a 2 ( log a − log b ) ( log a − log c ) f(a,b,c)=a^2(\log a - \log b)(\log a - \log c) f ( a , b , c ) = a 2 ( log a − log b ) ( log a − log c )
X 40303
X 40297 の等角共役点
isogonal conjugate of X 40297
f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) f(a,b,c)=ag(b,c,a)g(c,a,b) f ( a , b , c ) = a g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = b ( log a − log b ) + c ( log a − log c ) g(a,b,c)=b(\log a - \log b) + c(\log a - \log c) g ( a , b , c ) = b ( log a − log b ) + c ( log a − log c )
X 40304
X 40298 の等角共役点
isogonal conjugate of X 40298
f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) f(a,b,c)=a^2g(b,c,a)g(c,a,b) f ( a , b , c ) = a 2 g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = 2 log a − log b − log c g(a,b,c)=2\log a - \log b - \log c g ( a , b , c ) = 2 log a − log b − log c
X 40305
X 40299 の等角共役点
isogonal conjugate of X 40299
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) f(a,b,c)=g(b,c,a)g(c,a,b) f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) ただし、 g ( a , b , c ) = b 2 ( log a − log b ) + c 2 ( log a − log c ) g(a,b,c)=b^2(\log a - \log b) + c^2(\log a - \log c) g ( a , b , c ) = b 2 ( log a − log b ) + c 2 ( log a − log c )
X 58830
外マルファッティ円の曲率重心
(外マルファッティ三角形のジェルゴンヌ点)
centroid of curvatures of the external Malfatti circles
(Gergonne point of the external Malfatti triangle)
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) + a f(a,b,c)=\dfrac{g(b,c,a)g(c,a,b)}{g(a,b,c)}+a f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + a
ただし、
g ( a , b , c ) = 2 b c − ( a + b + c ) ( b + c − a ) g(a,b,c)=2\sqrt{bc}-\sqrt{(a+b+c)(b+c-a)} g ( a , b , c ) = 2 b c − ( a + b + c ) ( b + c − a )
別表現1
f ( a , b , c ) = g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) + a f(a,b,c)=\sqrt{\dfrac{g(b,c,a)g(c,a,b)}{g(a,b,c)}}+a f ( a , b , c ) = g ( a , b , c ) g ( b , c , a ) g ( c , a , b ) + a
ただし、
g ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a ) g(a,b,c)=b^2+c^2-a^2+6bc-4\sqrt{bc(a+b+c)(b+c-a)} g ( a , b , c ) = b 2 + c 2 − a 2 + 6 b c − 4 b c ( a + b + c ) ( b + c − a )
別表現2
f ( a , b , c ) = a ( 2 g ( b , c , a ) g ( c , a , b ) g ( a , b , c ) + 1 ) f(a,b,c)=a\left(\dfrac{2g(b,c,a)g(c,a,b)}{g(a,b,c)}+1\right) f ( a , b , c ) = a ( g ( a , b , c ) 2 g ( b , c , a ) g ( c , a , b ) + 1 )
ただし、
g ( a , b , c ) = 1 − ( a + b + c ) ( b + c − a ) 4 b c g(a,b,c)=1-\sqrt{\dfrac{(a+b+c)(b+c-a)}{4bc}} g ( a , b , c ) = 1 − 4 b c ( a + b + c ) ( b + c − a )